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~~-A-BSTRACT

report evaluates superresolution direction finding methods for land tactical

narrowband VH‘E{HHF purposes. The DF methods are described and evaluated in depth
using a common theoretical framework beginning with classical methods and ending with
modern day eigenanalysis based methods. Based on this analysis, superresolution methods

can be described in terms of a five step procedure where each step has a unique purpose in
the estimation process. Different methods vary according to the operations performed at
each step. This is useful in analyzing and comparing the theoretical performance of various
DF methods under the same conditions. The results from simulations are also included to
support the theoretical evaluations. Ra > DeeeTion Pan b, g uid (- i,
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RESUME

Ce rapport contient une évaluation des techniques de radiogoniométrie &
superrésolution pour des signaux tactiques terrestres VHF /UHF & bande passante étroite.
Les méthodes de radiogoniométrie sont décrites et évaluées en détail 3 partir d’une théorie
unifiée valide pour les méthodes classiques et les méthodes modernes utilisant des valeurs
propres. Il est possible, a partir de cette théorie, de décrire les méthodes de superrésolution
a ’aide d’une procédure en cinq étapes ou chaque étape a un but unique dans le processus
d’évaluation. Les différentes méthodes se différencient par les opérations effectuées &
chaque étape. Il s’agit d’une caractéristique utile pour 'analyse et la comparaison, dans les
mémes conditions, des performances théoriques de diverses méthodes de radiogoniométrie.
Les évaluations theonques présentées sont étayées par des simulations.
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EXECUTIVE SUMMARY

A considerable amount of work on superresolution radio direction finding (DF)
methods has been reported in open literature sources over the last twenty years. However,
due to the variability in approaches, it is difficult to make definitive statements as to the
relative performance and merits of the various methods described. In this report a common
theoretical framework is used to describe the various methods. The theoretical discussion
presented in this report is based on the analysis as first presented in the open literature as
well as new analysis. The new analysis was required to ensure a unified approach in the
theoretical discussion as well as provide a firm theoretical basis for techniques which have
been taken for granted in the open literature, but rarely discussed.

Simulations are also presented to illustrate relative performance of the various DF
methods using the same input data. Since this report was written in support of tactical
VHF/UHF DF, the simulations deal predominantly with multipath (fully coherent) signals
since multipath has been perceived to be the most serious source of error in current
operational DF systems.

To keep this report to a manageable size, only representative DF methods based
on classical spectral estimation techniques and those which have evolved from these
techniques have been described. For example, this includes the Bartlett method, Linear
Prediction, MUSIC, and other similar estimators, but does not include the phase
interferometer, Esprit and Maximum Likelihood methods. Additionally, analysis has been
restricted to uniform linear arrays and white Gaussian noise statistics. Despite these
limitations, the discussion in this report is reflective of the main body of research in DF
over the last twenty years and before this report was written.

DF methods can be described in terms of three filter models, namely, the movin~
average filter, the autoregressive filter, and the autoregressive moving average filter. In
terms of accuracy and computational speed, methods based on the all pole or autoregressive
filter model have shown the greatest promise and for this reason were the main focus of this
report.

It is shown that the autoregressive filter based methods can be generalized as a
five step procedure. These steps include:

1. Estimation of the autocorrelation matrix.
2. Division of the autocorrelation matrix into a signal and noise subspace.
3. Generation of an enhanced inverse autocorrelation matrix.
4. Estimation of the all pole filter coefficients.
5. Estimation of the signal bearings from the filter coefficients.
Each of these steps is the subject of separate sections in this report
In terms of the resultant DF accuracy, and given the assumptions and restrictions

made in this report, the root-MUSIC and root-Minimum Norm methods represent two of
the best methods for DF. These methods are far superior to classical techniques but are in




no way optimum - more research is still required in each of the steps listed previously.
Additionally, in practice, many of the assumptions and restrictions used in this report are
often untrue, so that other areas of research include:

1.

5.

Extension of techniques used for uniform linear arrays to arbitrary array
geometries, or development of comparable techniques.

Sensor calibration.
Estimation of noise statistics in an unknown coloured noise environment

Modifications to the signal model for actual multipath environments and
mixed coherent/noncoherent signal environments.

Faster algorithms for realtime implementation.

Solutions to the above problems will be required hefore the promises of superresolution
methods can be fully realized.
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1.0 INTRODUCTION

A considerable amount of research and development has been carried out over the
last twenty years in advanced spectral estimation methods which has led directly to the
development of advanced radio direction finding (DF) methods. The methods of interest
are those which are intended to operate against conventional narrowband VHF/UHF radio
signals (i.e., CW, AM, FM, and SSB with bandwidths less than 200 kHz) in a land-based
tactical environment. This report discusses these methods and their potential for
improving the capabilities of current conventional ¢~ “tical DF systems (discussed in
referenceﬁl-l]).

Each of the methods are discussed in terms of their development philosophy and
their ability to deal with various error sources including noise, co-channel interference, and
multipath. Although the subject of advanced DF is not limited to theory, a fundamental
understanding of the capabilities of these methods is essential if a successful operational
system is to be built.

1.1 SYSTEM OVERVIEW

For the sake of simplicity, the sensor systems discussed in this report are assumed
to consist of a linear array of N vertical dipole antennas, all of which are connected to N
separate perfectly matched (in both gain and phase) and like-numbered receiver channels as
shown in Figure 1.1.

Y Sensor 0 _

Receiver O o
Y Sensor 1

. | Ty
Receiver 1 —'——l_ Bearing S
Processor

Y Sensor N-1

Receiver #-1 Zu-

FIGURE 1.1: Block diagram of a multi-channel DF system

In the receiver, each channel is filtered to the correct bandwidth, mixed using a
common reference signal (at the filter center frequency) to generate an in-phase and
quadrature baseband representation of the antenna signal, which are then digitized. The
sampling rate is assumed to be twice the bandwidth (i.e. the Nyquist rate). The
bandwidth of the signal is assumed to be sufficiently na:row so that the modulation
envelope does not change during the time taken for a signal to traverse the array when the
signal is incident from boresight.




The receiver outputs are used as the inputs to the bearing processor which are
represented by the complex valued parameters zo, 7y, 2o, ..., Zy.y where the subscript
represents the channel number. The bearing processor inputs are assumed to be
undistorted baseband representations of the antenna signals. In this context the values
To, I, T2, ..., Ix-1 are referred to as the sensor data. A single sample (alternately called a
"snapshot" in the open literature) is defined as the set of values z;, z;, 2, ..., I,y measured
at a specific instance in time. To distinguish sensor values from the same channel n but
measured at different points in time (i.e. different time samples), an alternate
representation is used, namely, z,(¢), where ¢ represents the sample index.

Throughout this renort, the parameters M, N, and T are used exclusively to
represent the number of signals, the number of sensors, and the number of sensor data
samples, respectively. Other definitions and conventions followed throughout this report
are described in the glossary.

1.2 SPECTRAL ESTIMATION AND RADIO DIRECTION FINDING

The application of spectral estimation concepts to radio direction finding is
illustrated using Figure 1.2. In this representation a single radio signal in a noiseless
environment traverses an antenna array with a bearing in azimuth given by ¢. The
assumption is made here (and throughout the rest of the report) that the transmitter is far
enough from the antenna array so “hat the wavefront is planar. Additionally, since at
VHF/UHF signal propagation is generally limited to ground waves, elevation angles are
always considered to be () degrees.

Sensor 0 1 2 3

FIGURE 1 2: Radio direction finding sensor array

The amplitude and phase measured at sensor n in Figure 1.2 is :cpresented at
basehand by the complex value,

- mwd
.= cdt)e’ (1.1)

where ¢(t) is the complex baseband modulation envelope measured at sensor 0, d is the




sensor spacing, and w is the spatial frequency defined by
W= 27” cos(@) rad/m. (1.2)

Here A represents the signal wavelength. The term spatial frequency is used to denote that
the frequency is measured with respect to position rather than with respect to time. For
more complex antenna configurations, the spatial frequency may still be calculated using
equation (1.2) by designating an arbitrary baseline as the reference baseline and then
making all angular measurements with respect to it.

If a number of signals of different bearings impinge upon the sensor system in a
noisy environment, then the spatial signal z, is the sum of the individual signals, that is,

M
= > el e ™ + mt). (1.3)
m=1

where M represents the total number of signals and 7,(t) is the noise measured at sensor n.
Spectral estimation methods can be used to resolve the various components in equation
(1.3) by first generating the spatial power spectral density function. By taking advantage
of the relationship between spatial frequency and bearing, this spectrum is converted to a
DF spectrum which gives the power density versus bearing. The location of the peaks (local
maximums) in the DF spectrum are then used as estimates for the signal bearings.

The spectral estimation approach has led to the development of a number
sophisticated direction finding methods whose origins are based on research done in fields
as diverse as geophysics, digital communications, underwater acoustics, and speech
analysis. In many of these applications spectral estimation methods are used to process
time series (or temporal) data, whereas in the direction finding case these methods are used
to process position series (or spatial) data.

Mathematically there are some important differences between temporal frequency
estimation methods and spatial frequency estimation methods. One difference is that
position is a three dimensional parameter while time is one dimensional. Unless otherwise
indicated, the DF methods in this report are discussed in terms of a single antenna baseline
with uniform antenna spacing. In this special case, position is restricted to one dimension
and the correspondence between the temporal and spatial methods is one to one. In
general, results for single baselines can be extended to multiple baselines, if care is used.

Another important difference between temporal and spatial methods is that in
spatial frequency estimation the time dimension has no equivalence in temporal frequency
estimation. This extra dimension provides information which is useful when dealing with
uncorrelated signals or temporal noise. It is also easier and a lot less expensive to sample
with respect to time than with respect to position.

The layout of this report, where applicable, follows the historical development of
the DF methods discussed, starting with classical methods (Section 2), followed by model
based methods (Sections 4-5), then on to the more advanced eigenanalysis methods
(Sections 6-8), and finally ending with a discussion of the rooting method (Section 9).
Additional sections have also been included for the discussion of methods which can be
considered separately from DF, but are nonetheless critical to the success of advanced DF




methods. This includes autocorrelation matrix estimation (Section 3), and model order
determination (Section 9).

The methods discussed in this report are, for the most part, based on the
autocorrelation matrix formulations since this simplifies comparisons. In many cases
variants of these methods exist which are computationally more attractive, but are not
discussed since they are theoretically identical.




2.0 THE CLASSICAL APPROACH

The exact DF spectrum can be calculated by computing the spatial
autocorrelation sequence and then taking the Fourier transform of this sequence. This is
called the indirect method. Alternatively, the exact DF spectrum can be calculated by
taking the Fourier transform of the input data sequence and squaring the absolute values of
the transformed sequence. This is called the direct method.

In either the direct or indirect methods, the assumption is made that there is an
infinite amount of data available. Under realistic conditions, this clearly will not be the
case, so instead approximations must be used which result in DF spectrums which are only
estimations of the true function. Additionally, under these conditions, the two methods
may produce different results.

2.1 THE INDIRECT METHOD OF ESTIMATING THE DF SPECTRUM

The DF spectrum can be defined as the Fourier transform of the spatial
autocorrelation sequence and is given by,

@®

S(¢) = > redm) 7™ 2.1)

m=-mo

where the spatial frequency w is related to the bearing angle ¢ by equation (1.2), and d
is the spacing between consecutive antennas. The definition and estimation of the
autocorrelation sequence r.;(m) is discussed in the next two sections.

2.1.1 The Autocorrelation Sequence

The statistical definition of the autocorrelation of a spatially sampled random
process, I, at two different indices m and n is defined here as

ra(m,n) = E{z, 72} (2.2)

where E{y} is the mean or expected value of the process represented by y. If the
sampled process is wide sense stationary, then its mean is constant for all indices, or

E{z.} = F{z.}, (2.3)
and its autocorrelation will depend only on the difference n-m, or

E{zm Z:} = E{ImOk I:Ok}; (24)

where k is any arbitrary integer. Under these conditions, an autocorrelation sequence
may be defined where each element is given by

r2(m) = E{Znem Zn}. (2.5)
The index value m is called the autocorrelation lag.

In direction finding, the wide sense stationary condition means that all signal




sources must be located in the farfield of the antenna array (i.e. the wavefront arriving at
the antenna array produced by any one source is planar) and the first and second order
statistics of the noise (mean and variance) do not change with respect to position and time.

2.1.2 The Unbiased Estimator

A more practical definition of the exact autocorrelation sequence than the one
defined by equation (2.5), which takes advantage of the fact that the input data is sampled
in both position and time, is given by

T N
rem) = lim ey 2 gwer 2 eelt) 2800 (2:6)

t=-T n=-N

where T represents the number of time samples and N represents the number of sensors
(these definitions for T and N are used throughout the rest of this report). Here t represents
the temporal index and = the spatial index. The Fourier transform of this sequence is the
exact spectrum. Unfortunately, under realistic conditions, the number of data values is
finite and consequently the value of Nis also finite, rather than infinite. As a result, it will
only be possible to estimate the autocorrelation sequence.

One method of estimating the sequence is to modify equation (2.6) to give,

. T-1 N-m-1
re(m) = > = D Tt Za(t)  for0<m< N, (2.7)
=0 n=0
rem)=0 form> N, (2.8)
and,
rem) = ri(-m)  for m <O0. (2.9)

Equation (2.7) is an unbiased estimate of the autocorrelation sequence, since the expected
value of the estimated autocorrelation lag is the true value.

Since only estimates of the autocorrelation sequence are available, the Fourier
transform of this sequence will be an estimate of the DF spectrum. That is,

N-

:q(¢) = z ;zz(m) e-jm, (2.10)

mz1-N

where the values of ;',,(m) are computed using equations (2.7) and (2.9).
2.1.3  The Biased Estimator
One difficulty with generating the autocorrelation sequence using equation (2.7),

especially if only a few samples are available, is that the variances of the estimated
autocorrelation sequence values increase as the absolute lag index increases, since there are




less and less data values available for averaging. As a consequence of this, it is possible for
the estimated sequence to be non-realizable. For example, the estimate of any value in the
autocorrelation sequence (except at lag 0) may result in a value larger than the one at lag
0, which is not physically possible.

To overcome this problem, a triangular weighting function (window) is applied
which results in the modified estimate given by

N-m-1

rm) = > & > awelt) 2200 (211)
t=0 n=0

This is a biased estimate of the autocorrelation sequence, since the expected value of
estimated autocorrelation lag is not the true value, except for lag 0. However, this estimate
always results in a physically realizable autocorrelation sequence. Additionally, as the
number of values N approaches infinity, the estimated autocorrelation sequence
approaches the true sequence. In this context, the estimator is asymptotically unbiased.

A second advantage of the biased autocorrelation sequence estimate, compared to
the unbiased estimate, is a lower variance since the effect of the larger lag elements, which
are estimated from fewer product terms and therefore have greater variance, are
suppressed. The disadvantage is that windowing degrades the resolution of the
corresponding DF spectrum estimate (which is computed using equations (2.10) and (2.11))

2.2 THE DIRECT METHOD OF ESTIMATING THE DF SPECTRUM
An alternate method (called the direct method here) of computing the DF

spectrum is to square the absolute magnitude of the Fourier transform calculated directly
from the data, that is,

2
S(¢) =7 1 X(9)* = ¢ X(4) X(8)" (212)
where X(¢) represents the spatial Fourier transform of the data.

If only a finite amount of data is available, X(¢) can be approximated by
. N-1 omd
X(¢) = D z(t) € (2.13)
m=0

where d is the antenna spacing. Using this approximation, the calculated value of S(¢)
will be an estimate of the true value. Substituting equation (2.13) into (2.12) gives

R N-1 ) N-1 omd
S(9) = (228 €°™) (2 za(®) €™ (2.14)
m=0

m=0

The spectrum generated for a random process using equation (2.14) is statistically
unstable [2-1]. That is, as N increases, the variance of the estimated value of S(¢) does not
approach zero, but rather becomes proportional to the square of the true value of S(¢).
The method used to get around this difficulty is to compute the estimated spectrum for




several different time samples, then average the spectrums together to give an average
version. That is,

0 =gt 3 [(Sanlt) ™) (S ekl ) (215)

2.3 MATRIX REPRESENTATION OF THE CLASSICAL ESTIMATORS
231 The Direct Method

Inspection of equation (2.13), the Fourier transform of the sensor data, suggests a
compact matrix representation which is,

X(¢) = e'x, (2.16)

where e and x, are both N element column vectors. The vector x, is the sensor data vector
measured at a time £, and is defined as

[ () |
.’L’l(t)
z(t) |- (2.17)

X
il

men_

The N element vector e is referred to as the steering vector and is given by

[ 1
eqwd

e=| " | (2.18)

eojw(l.v- 1)d -
The estimated DF spectrum, using the direct method (equation (2.12)), is then
5(¢) =  e'xale (2.19)

Following the example of equation (2.13) and incorporating time averaging to generate a
more stable estimate gives,

. T-1
S(6) = p >, e'xaxle, (2:20)
t=0

or,




5(9) = f &'XXe, (2.21)

where
2(0), (), @), @(T1)]
2(0), zu(1), =z(2), ..., =z(T-1)
X = flT 2(0), zA1), zA2), .., zLT1)|. (2.22)

! $N-1(.0), Zn-l('l), z,,-l(-z), cery TN- 1& T—l) i

Equation (2.21) is called the Bartlett estimator [2-2] (note that since for bearing estimation
purposes only the shape of the spectrum is important the factor 1/N can be dropped from
this expression).

232 The Indirect Method

An alternate representation of the Bartlett estimator given by equation (2.21) can
be formed be letting the matrix product XX" be represented by a single matrix so that,

5(¢) = he'Re. (2.23)
The elements of the matrix R are given by
- 1 = *
ry=p 2 (1) 23(0)- (2.24)

t=0

The maximum stability in the estimate of the spectrum occurs as the number of
samples, T, is increased to infinity. In this limiting case the elements of the matrix
become,

E{rij} = B{z 27} = ruo(ig), (2.25)

which are the values of the spatial autocorrelation sequence. As a result, R is called the
autocorrelation matrix and can be defined in terms of the estimated autocorrelation matrix
as,

R = E{R}. (2:26)

The matrix R is also called the covariance matrix since r;; also represents the covariance
between two time varying processes defined by z(t) and z,(t’)

If the matrix calculations are performed for equation (2.23) the result can be
expressed as,




=

-1 N-1

:9(¢) = 71V z Z ¢ ™™ ;',,,,. P (2.27)

m=0 n=0

2

Replacing ;',,m with equation (2.24) gives

=S Ni LSt 2l M (2.28)
R =0 -o—Te-o e . .

Grouping terms with the same Fourier coefficient g ulmonld

K#) = gop @) zra(8) €™ + (at) T ) + (1) ana(§))e ™"
+ (zo(2) zx-s(t) + z(t) I:.z(t) + zo(t) z;_l(t))e'jw(fﬂ)d
+ o +(omd) za(0) €N, (2.29)

and expanding,

and rewriting,

S zn() 219 (2.30)

N-1 T-1
P +jumd| 1 1
=Y ™ r >
m=1-N t=0
Inspection of the quantity in the square brackets above reveals it to be the biased
autocorrelation sequence estimator defined earlier by equation (2.11). From this, it is
apparent that the use of the autocorrelation matrix in equation (2.23) is equivalent to the

direct method if, and only if, the biased autocorrelation sequence estimator is used.

2.4 DATA WINDOWING

nz=0

There are several consequences of the spatially limited data available. For one,
the spatial frequency resolution of this technique is limited to roughly the reciprocal of the
antenna baseline, or worse. Another consequence is that the sudden transition to zero of
the unknown values in the data sequence has the effect of causing large side lobes (Gibbs
phenomenon) in the spatial frequency spectrum. Window functions can be applied which
taper the data at the start and end of the data sequence to reduce the sidelobe problem. As
a consequence, the data is modified to become

Yn = n Tn (2.31)

where a, is the weighting coefficient. The modified value y, is used in place of z, in
any of the estimation techniques discussed so far.

In terms of the matrix equations discussed previously, the modification given in
equation (2.31) results in a new data matrix Y (which replaces X) of the form,

10




( aoz(0),  @ozo(1l),  @ozo(2), ...,  aoze(T-1) .
0.121(0), 0.121(1), 0131(2), ceey am(T—l)
Y= flT 02740),  a22f1),  @azA2), .., aaml T-1) |. (2.32)

L aN‘lzN‘l(O)t aN-1ZN- l(l)a aN—lzN-l(2)) -eey GN-1TN- 1( T-l) J

The effects of using different types of data windows are given in reference [2-3].
The application of the weighting function has a price, however, as sidelobe reduction is
achieved at the expense of resolution.

2.5 EXTENSION TO NONLINEAR AND NONUNIFORM ARRAYS

Inspection of the steering vector, e, reveals that it contains the (conjugate)
spatial Fourier transform coefficients corresponding to each antenna in the array. In
spatial terms, the steering vector represents a sinusoidal signal propagating through space
in a known direction. Each element in the vector defines the amplitude and phase
parameters of the signal at each antenna position relative to antenna position 0.

For a sinusoidal wave propagating in a known direction, the steering vector
elements can be defined for any antenna position as

3 (xpcos(bleos(d) + y,sinibleos(s) + zsinib)
en=-¢ (2.33)

where the nth antenna position is specified in terms of the cartesian coordinates (zn, Y, 2n),
antenna 0 is located at the origin, the z-y plane is the surface of a flat Earth, and e, is the
nth element of the steering vector. Additionally the elevation bearing angle 9 has also been
added for the more general case where the signal elevation angle must also be determined
(this changes the bearing estimation procedure from a one dimensional search in azimuth
to a two dimensional search in both azimuth and elevation).

Equation (2.33) may be written in a more compact form, namely,

aon_T
+j—(P_. B)

en = N , (2.34)
where P, is the vector representing the position of the n¢ antenna and is defined in
Cartesian coordinates as

Xn ‘
Po=1yal, (2.35)
Zn

and B is the signal direction vector defined by
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cos(¢)cos ()
B = | sin(¢)sin(y) |. (2.36)
sin(y)
For a uniform linear array, where the array baseline is aligned with the z axis

(i.e. P,=[nd, 0, 0]T) equation (2.34) reduces to a more familiar form (see equation (2.18))
where,

en=e"" (2.37)

2.6 BEAMFORMING

The directional response of the spectral estimators described to this point are
equivalent to beamforming [24]. For example, the general form for the output of a
beamformer is given by

N-1
W) = D n Tn(t - tn), (2.38)
m=0

where a, represents the weighting coefficients and ¢, the time delays. In this example
Zn(t) represents the carrier modulated signal (not the baseband representation used
throughout the rest of this report) which is given by,

) = en(t)E™e™ (2.39)

where cn(t) represents the complex amplitude of the signal measured at sensor m, w
represents the spatial frequency, S represents the carrier frequency, and 7, represents the
displacement from sensor 0 in a direction parallel to the reference baseline (note that

rm = md for a uniform linear array).

If the values of the time delays ¢, are small (i.e. t, << 0.5/BW where BW
represents the bandwidth of the modulating signal cy(¢)) then the beamformer output can
be accurately approximated by,

N-1 _
W= > amzalt) € (2.40)

m=0

Additionally, by choosing the time delays so that,

Bt = wr, (2.41)
the beamformer equation becomes,
N-1 -
y(t) = Za,,, Zn(t) €7, (2.42)
m=0

Inspection of this last result shows that for appropriate choice of time delays, the
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beamformer output y(¢) is the spatial Fourier transform of the weighted sensor data at time
instance ¢ (similar to equation (2.13)). That is, the beamformer is an alternate
implementation of the classical methods described previously.

Following the same procedure as before to compute the DF spectrum (see section
2.2), then
. 1 T-1 . N-1 . N-1 o
-jwr, +
S8 =Fp 2. [(2 anam(®) € (> omanlt) ™), (243)
t=0 m=0 m=0
or in the more general case, |
R 1 T-1 . N-1 iht N-1 vl
S(8) =gp 2 [(> enanlt) ) (3 omanl) €m). (2.44)
{=0 " m=0 =0
Expressed in matrix form "
P 1
S(9) = p&YY'g, (2.45)
where the vector g is defined as
e‘jﬂto ]
e“]ﬂl 1
g=| ¢ |, (2.46)
e’jb‘N-l

and the matrix Y was defined in section 2.4.

Equation (2.44) is identical in form to the classical spectral estimator described
by equation (2.21) except that the windowed data matrix Y is used in place of the matrix
X, and the vector g is a more general version of the steering vector e. The two vectors
a.ll;e identical if equation (2.41) is satisfied or the elements of the vector g are chosen so
that

2 T
S '), (2.47)

gnze"::

where P, and B were described in section 2.5. In terms of the time delay coefficients
used in the beamforming network, this is equivalent to,

, ~PJB

=, (2.48)

where c is the propagation speed of light.
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3.0 THE ESTIMATED AUTOCORRELATION MATRIX

The autocorrelation matrix, which was first introduced in conjunction with
classical direction finding algorithms, is a central feature in the derivation of the
superresolution algorithms to follow. All these algorithms are derived assuming the true
autocorrelation is known, which is rarely true in practice. The autocorrelation matrix is
normally estimated from the available input data, and the manner in which this is done
can impact on the performance of the superresolution algorithm especially in the case of a
small number of sensors. Given the importance of the estimation procedure, some of the
more common methods are discussed here along with some of their drawbacks.

Estimation of the autocorrelation matrix using only a single data sample will be
discussed first since it simplifies the task of illustrating some of the concepts involved.
Estimation involving several data samples measured at different instances in time is
introduced later, followed by a discussion of the effects of noise.

Before proceeding with a description of the autocorrelation matrix estimation
methods, it is useful to examine the structure of the true autocorrelation matrix as this will
provide a basis for comparing various estimation methods. The definition of the
autocorrelation matrix is given by,

R = B{XX"}, (3.1)

where X is a data matrix (or vector) and is described in the following sections. The
dimensions of R are defined here to be (p+1)x(p+1) where the value of p is less than the
number of sensors N. The definition of p has been chosen this way to correspond to the
filter order of the all pole filter methods discussed later on in this report. If we assume that
the received signal is made up of M signals with unique bearings plus uncorrelated sensor
noise (either spatial and/or temporal), then the data matrix has the form

M
X=>S+N (3.2)
1=1

where S, is the data matrix formed from the itk signal in the absence of all other signals or
noise. Noting that the noise is uncorrelated and that signals arriving from different
directions are also uncorrelated (with respect to position), then the autocorrelation matrix
can be redefined as

R = E{ zu:s.s',-'} + E{NN"}. (3.3)
1=1

Since the signal is assumed to be deterministic (not random) the signal correlation matrix
is defined in this report as,

N
R,= >SS! (3.4)

1 =21

and the noise correlation matrix as
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Ry = E{NN"}. (3.5)

An important aspect of the true autocorrelation matrix R is the rank of the signal
correlation matrix R,. If the number of signals is less than the number of rows or columns
in R (i.e. M < p) then R, will have rank M. Based on this, it would be possible to set up M
equations from the rows or columns of R, to solve for the bearings of the M unknown
signals exactly. This is the basis for improved performance of superresolution spectral
estimators compared to classical estimators which are based on correlating an ideal signal
with the data which requires substantially more data.

In practical situations, the true autocorrelation matrix R is not usually available
and must be estimated from the data. In this case the bearings cannot be solved exactly,
but must also be estimated generally using least mean square techniques. The accuracy of
the bearings then becomes a function of the accuracy of the autocorrelation matrix
estimate.

3.1 ESTIMATING THE AUTOCORRELATION MATRIX

The estimated autocorrelation matrix is formed from the input data using the
following expression:

R = XX* (3.6)

The various methods of estimating the autocorrelation matrix discussed in the following
sections differ only in the manner of setting up the data matrix X.

In the simplest case, the data matrix is a vector defined as
7

Iy

Ty-1

In this case the lower case form is used to denote a vector and the subscript fhas been
added to denote the forward data case (i.e., X = x;). In the forward case, the data is
ordered from 0 to N-1. In a similar manner, a backward data vector may also be defined
as,
- * -
ZN-1
*
Iy-2
*
Xy = Zf.{_z . (38)
*
L To

The backward formulation follows from the form of the backwards signal model. For
example, letting * e forward data vector elements, z;n, be represented by equation (1.3),
the backward elements can be represented as,
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M M
+3{(N- g0 -j(nwmd+m
= ZCM(t)eJ(( n)wmd+0m) — zcm(t)ey(nwm ). (3'9)
m=1

m=1

In comparing the forward and backward signal models, the only difference in the two
expressions are the signal phases represented by 0, and Q, respectively. Since the apparent
signal bearings are unchanged, the bearings determined using either data vector will be
identical. The above analysis does not follow for noise, so that in the noisy case the
bearings estimated using either data vector will only be approximately the same.

One difficulty in using either x; or x, to estimate the autocorrelation matrix using
equation (3.6) is that since only one unique vector is used to make the estimate, the
resulting matrix will have rank 1. Superresolution algorithms depend on the rank of the
signal correlation matrix equaling the number of signals, so if the number of signals is
greater than 1, resolution is severely degraded.

A second difficulty with computing the estimated autocor-elation matrix in this
manner is that the elements of the matrix are sensitive to instantaneous noise
perturbations in the data, whereas the true autocorrelation matrix is only sensitive to the
the statistics of the noise which are assumed to be constant or very slowly changing over
the measurement period.

Methods to deal with these difficulties are discussed in the following sections.
32 THE AUTOCORRELATION METHOD

One method, called the autocorrelation method [3-1}, is to append p zeros to the
start and p zeros to the end of the data. Variants include appending zeros to the start or
end only. The data is then constructed from a number of shifted subarrays of size p+1
where p < N as shown below,

[ 0, 0, 0, .., 0, To, ---5 TN-p-1, IN-py -y TA-3, IN-2, IN-] ]
0, 0, 0, ..., Zo, Tty -y ZTh-py TN-pely - TN-2, TN-1, 0
0, 0, 0, ey I, T2y ooy TN-prly TN-pe2y ooy TN-1, 0, 0
=5 - S e
0, 0, =zo, .., Tp-3, Tp-2, -y 2IN-3, 2IN-2, .oy O, 0, 0
0, Ty, I, vy Tp-2y Ip-l, ceey  IN-2, IN-1, -y 0, 0,
| Zo, i, Z2, -y Zp-1, Ty o TN-l, 0, ..., 0, 0, 0 |

where the subscript f is again used to denote the forward case. The corresponding conjugate
backward matrix is given Hy
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0, 0, 0O, .. 0, Zniy .., Tp Tp-1, ...y, T2, Ty, T ]
0, 0, 0, ..., zy1, 2Zn2 ..., Tp-1y Tp-2, .-y ZTy1, Zo, 0
. 1 0, 0, 0, ., Zy2, 23 ..., Tp-2 Tp-3, ..oy Zo, 0, O
Xe=ymp| 0 A R
0, 0, IN-1y ooy TN-pe2y TN-poly ooy T2y Ty, -y 0, 0, 0
0, Zv-1, Tv-2, .-, TN-pet; ZTN-pp -.-, Z1, Zoy, ..., 0, 0, O
| Tn-1, TN-2, TN-3, .-+,  ZN-py TN-p-1y -, Zoy, 0, ..., 0, O, OJ

Although the autocorrelation method avoids the rank deficiency problem
discussed in the previous section, resolution of spectral estimates Sincluding classical
methods) are degraded due to the pre- and postwindowing of the data (i.e. the values of the
unknown data in the data matrix z,, z3, 23, ..., , and Zy, T, Twa, ..., Tveps aTe assumed
to be zero). This problem becomes more severe as the number of sensors is decreased.
Figure 3.1 illustrates one example of this where three equal power signals with bearings of
40, 50, and 120 degrees are intercepted by an 8 element sensor array with one half
wavelength spacing. The signal to noise ratio was 65 dB. Three methods (the
autocorrelation method and two others to be described in the following sections) were used
to estimate the autocorrelation matrix for p = 4. The Thermal Noise estimator (section
5.2.6) was then used to compute the corresponding DF spectrums. In the case of the
autocorrelation method, the signals at 40 and 50 degrees were not resolved despite the high
signal to noise ratio. In general, the results were poor compared with the other
autocorrelation matrix estimation methods.

Based on the poor resolution of this method, the autocorrelation method is
considered too inaccurate for systems with small arrays (e.g. tactical systems) and is not
discussed in the rest of this report.

100 — .

90t 4
----- Autocorrelation Method

so} - Covariance Method i

— Modified Covariance Method
70

Power Spectral Density (dB)
(7.
S

0 20 40 60 8 100 120 140 160 180
Bearing (degrees)

FIGURE 3.1: DF Spectrum based on three different methods of autocorrelation
matrix estimation
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33 THE COVARIANCE METHOD

Another method of autocorrelation matrix estimation is called the covariance
method [3-1]. It operates only on the known data and thus avoids the windowing problem.
Dividing the data into overlapping subarrays of size p+1, (a technique which is called
spatial smoothing [3-2]) the forward data matrix is given by

Zo, Z, 2, -y IN-pi
) I, Z2, T3, - INp
— 2y, 3, T4y ooy TN-pol
X= | P " o | (3.12)
ZP, xpol, ZPQZ, veey IN-}

The corresponding backward matrix is given by,

IN-1, In-2, IN-3, -y zp
" IN-2, Ty-3, ZIN-4, ...y Zpi
1 Ty-3 In-4 IN-5y .-y Tp2
Xb = \/N—_p . ’ . 4 . ! ? P’ « (313)
IN-p-1y TN-p-2y TN-p-3) ---» T0

In the covariance method, assuming the data is noisy and only a single sensor
sample is available, the rank of the estimated autocorrelation matrix will be the smaller
value of either N-p, which represents the number of columns of the data matrix X, or X,, or
p+1, which represents the number of rows of the data matrix. Ideally the rank will be
greater than or equal to M for optimum performance of the superresolution estimators.
Conversely, the maximum number of signal bearings that may be estimated is p subject to
the constraint that this value is less than or equal to the rank of the data matrix. This
constraint can be expressed as,

p<N-p and p<p+l. (3.14)

Since the rightmost expression is always true, the largest value for p is found by solving the
leftmost expression. The corresponding maximum number of signals (where M < p) then is
given by,

MeX (3.15)

It should be noted that spatial smoothing effectively decreases the sensor aperture
from N to p+1. This results in a decrease in resolution due to the smaller effective
aperture, although this is partially offset by the averaging effect of the extra columns in the
data matrix.

An example of the performance of the covariance method is shown in Figure 3.1.
A complete description of this example is given at the end of section 3.3.
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34 THE MODIFIED COVARIANCE METHOD

A more recently developed technique, called the modified covariance method
[3-3],[34], doubles the number of data vectors used to form the data matrix X, by
combining both forward and backward data matrices of the covariance method. The result
is given by,

Xp = vé (X, Xy)- (3.16)

where the subscripts fb are used to denote forward-backward, and the data matrices X, and
X, are defined by equations (3.12) and (3.13) respectively. The modified covariance
method is also sometimes called the forward-backward method.

In the modified covariance method, assuming the data is noisy and only a single
sensor sample is available, the rank of the estimated autocorrelation matrix will be the
smallest value of either 2x( N-p), which represents the number of columns of X, (double
that of X, or X,), or p+1 which represents the number of rows of X, The maximum
number of signal bearings that may be estimated is p subject to the constraint that the
rank is equal to or greater than the number of signals. The constraints can be expressed as,

p<2(N-p) and p<p+l. (3.17)

Since the rightmost expression is always true, the largest value for p is found by solving the
leftmost expression. The corresponding maximum number of signals (where M < p) then is
given by,

M2y (3.18)

In comparing this expression to the corresponding expression for the covariance method
(equation (3.15)) the advantage of the modified covariance method is clear. A greater
number of bearings can be estimated from a single sensor sample without sacrificing as
much resolution due to the decreased aperture size.

An example of the performance of the modified covariance method compared to
the previously described methods is given in Figure 3.1. A complete description of this
example is given at the end of section 3.3.

3.5 TIME AVERAGING

In the case where a number of time samples are available, a better estimate of the
autocorrelation matrix may be achieved simply by time averaging as shown here:

R=h Ti R(%), (3.19)

t=0

where R(¢) is the autocorrelation estimate formed for time sample ¢{. Equivalently, the
data vector can be modified in the following manner,
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X = 7%.[ X(0), X(1), X(2), ..., X(T-1) ], (3.20)

where X(¢) is the data matrix (as described in the previous sections) formed from time
sample ¢. In this form the relationship between time averaging is obvious, i.e. time
averaging is averaging performed over time, and spatial smoothing is averaging performed
over position.

The advantage of time averaging is that the resultant estimated autocorrelation
matrix becomes less sensitive to the effects of temporal noise. Additionally, in the case of
signals that are uncorrelated in time (i.e. they are independent signals transmitted from
separate transmitters), averaging increases the number of linearly independent columns of
the matrix X by order T compared to the submatrices X(0), X(1), etc. In this case the rank
deficiency problem can be overcome simply by taking a sufficient number of time samples
(i.e. T > M using the covariance method and T > M/2 using the modified covariance
method without spatial smoothing or p = N-1) to achieve the required rank of the
estimated signal correlation matrix, without having to resort to spatial smoothing.

Finally, in the case of correlated signals (e.g. multipath) the signals do not
decorrelate in time so that spatial smoothing technique must be used.

3.6 THE EFFECT OF NOISE ON AUTOCORRELATION MATRIX
ESTIMATION

One way to observe the effects of noise on the estimation of the autocorrelation
matrix is to determine the mean and variance of the matrix elements when they are
estimated using noisy data. Starting with the covariance method with time averaging, but
no spatial smoothing, the elements of the estimated autocorrelation matrix can be defined
as,

R T-1 *
SRR DIECLAC) (3.21)
t=0

If the data is assumed to be corrupted by white Gaussian noise, each sensor data value can
be represented as the sum of a signal plus a noise component, that is,

Za(t) = sa(t) + 7a(2). (3.22)

Substituting this relationship back into equation (3.21) gives,

re = S (5(05(8) + SO + 53(Om(8) + n(Bny(0). (3.23)

The mean value of the elements when i # jis given by,

T-1

E{r} = 1> s()s,(0), (3.24)

=0

-~

and when i = j(the main diagonal elements),
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E{rd = o+ Tzf s(f)s: (D), (3.25)
t=0

where o2 represents the noise power.

The elemental variance is given by,

v = B{ |ry-E{r}|’} = -i,.,(aﬂr'zl s()si(8) + afi s{t)sy(t) + To%). (3.26)

t=0 t=0

The above result is based on the fact that the variance of a process YY" is o,¢ and the
variance of the process XY" is g,%0,2 where X and Y represent uncorrelated white Gaussian
processes with variances ¢.? and 0,2 respectively. To simplify the above variance expression
a new parameter, k;;, is defined so that,

kit = o S (a(5(8) + s(0s3(8) ), (3.27)

where s2 is the sum of the individual signal powers. (Note that for a large number of
samples, and uncorrelated signals, «;; = 1). Using this definition then, the variance
becomes,

2.2 4

v = Zﬁig._t"_ . (3.28)

Since bearing accuracy is a function of the ratio of the input noise power (¢?) to
signal power (s2), equation (3.28) can be normalized by dividing through by s4 (which is the
equivalent maximum "signal power" of the autocorrelation elements) and reexpressing the
normalized variance in terms of the input signal to noise ratio. Calling this the normalized
elemental variance for the covariance method, the result is given by

% = 7(26;SNR* + SNR?), (3.29)

where the input signal to noise ratio measured at a sensor is given by

2

SNR = (3.30)

A

Note that v:! is a measure of the signal to noise power ratio of the elements of the
autocorrelation matrix (as opposed to the signal to noise power ratio of the data).

Inspection of equation (3.29) chows that the normalized variance is an inverse
function of SNR for signal to noise ratios greater than zero and an inverse function of SNR?
for signal to noise ratios less than zero. Figure 3.2 illustrates this effect through simulation
of a 5 element array with half wavelength spacing, p = 4, and T = 5. The bearing of the
incoming signals was 40, 50, and 120 degrees, and they were uncorrelated. The variance
was calculated from 1000 simulation runs performed for input signal to noise ratios ranging
from -60 to +60 dB in 1 dB steps and averaged for all the elements of the autocorrelation
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matrix.

The significance of this effect is that the bearing accuracy will degrade more
rapidly for signal to noise ratios less than zero, indicating the need to remove as much noise
as possible from the data before estimating the autocorrelation matrix.
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FIGURE 3.2: Elemental variance as a function of signal to noise ratio

In the more general case where spatial smoothing and/or time averaging is used
equation (3.29) can easily be modified to become,

% = p2m;SNR! + SNR?). (3.31)

Here K represents the total number of terms averaged together and can be expressed
mathematically as ‘

K = T(N-p). (3.32)

If the modified covariance method is used twice as many terms are involved in the
estimation of the autocorrelation matrix. For comparison purposes it is useful to keep the
same expression for K and modify equation (3.31) instead. At first sight this suggests a
simple relationship between the elemental variance for the covariance method (v.) and the
elemental variance for the modified covariance method (vm), namely,

Un = 0.57, (3.33)
This expression is not always valid as explained in the following analysis.

A closer inspection of the modified covariance method reveals that it can be
defined in terms of the covariance method =s,

22




r; = 0.5(cij + Cmn), (3.34)

where m = p-j and n = p-i. In this last expression r;; represents an element of the
estimated autocorrelation matrix determined using the modified covariance method and ¢,
represents an element determined using the covariance method. Since each element of the
modified covariance estimate is the average of two elements of the covariance estimate, the
modified covariance estimate would be expected to have half the variance (as predicted by
equation (3.33)) as long as the errors in ¢;; and cma are uncorrelated.

There are two conditions where the elements are correlated. The first case is for
elements lying on the main cross diagonal of the autocorrelation matrix (i.e. rop, iy,
T2p-2, --., Tp0). In this case ¢;; and cm, represent the same elements so that equation (3.34)
simplifies to

Ti; = Gij. (335)

Consequently for the cross diagonal elements, the normalized variance is actually given by
equation (3.31).

The second case where the elements are correlated occurs when spatial smoothing
is used in conjunction with the modified covariance method. Due to the overlapping nature
of the subarrays, the elements ¢;; and ¢y, are formed from many of the same terms (where
each term has the form z;z;"). By comparing how the two elements ¢;; and ¢y, are formed,
an expression for the number of common terms can be derived, namely, AT where

h =

N-p-|p -i-j iftheresultis>0
{ (3.36)

0 otherwise

Since the averaging operation in equation (3.34) has no effect on the AT common terms,
then the variance will be v, while the improvement due to the remaining K- AT
uncorrelated terms will be 0.5v.. From this, the elemental variance for the modified
covariance method can be defined as,

T+05v K- 1
Up = ‘Uch + ()i%( hl') = 5(1 + N—f—ﬁ) Ve (337)
or in terms of SNR,
e = g (l+ Né';‘:) (2k,SNR* + SNR?). (3.38)

If the value of A = 0, then equation (3.33) applies. If on the other hand & > 0 then
equation (3.38) can be rewritten as,

Yo = 7}?(2-%3'—;11) (2k,SNR' + SNR?) for h> 0. (3.39)

Inspection of this result shows that for large values of N (i.e. N >> 2p), the normalized
elemental variance of the modified covariance method degrades to that of the covariance
method.
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Given that the elemental variances are not all necessarily equal, it is useful to
determine the average elemental variance since this quantity provides a more useful
measure of how well the estimated autocorrelation matrix approximates the true
autocorrelation matrix. To do this, the assumption is made that x,; = 1. For a large
number of trials involving signals with uniformly distributed phases this assumption is
reasonable. For a single trial involving a very limited number of sensor samples and/or
correlated signals, the formulas derived in the following discussion will only be
approximations. .

In the case of the covariance method the elemental variances are all equal so that,
% = p(2SNR' + SNR?), (3.40)

where the overbar is used to denote the mean value. The situation is not as straight
forward for the modified covariance method since the value of 4 in equation (3.38) changes
with each element. After some algebraic manipulations, however, the result is given by,

_ -N-p? — N
T = (4+3N+gz(zp++511\f§r2 P)y for p2y (3.41)
and
— + 2 - N
= Gl ) ® Preey (2.2

Again, as N increases for a fixed subarray size, or fixed value of p, the elemental variance of
the modified covariance estimate approaches that of the covariance method.
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FIGURE 3.3:  Blow up of the elemental variance shown in Figure 3.2
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For the example shown in Figure 3.2, the predicted value of v,, = 0.6v, based on
equation (3.41) which is in excellent agreement with the simulated results (see Figure 3.3).
For signal to noise ratios much greater than 0, this translates into an equivalent increase in
the signal to noise ratio of 2.2 dB when using the modified covariance method compared to

the covariance method.

The concepts embodied by equations (3.40), (3.41), and (3.42) are illustrated in
Figures 3.4 and 3.5. These figures show the decrease in the variance as a function of the
number of terms for time averaging (Figure 3.4) and spatial smoothing (Figure 3.5) when
either the covariance or modified covariance methods were used. In the time averaging
case, the data samples were assumed to be taken from a 5 element array with half
wavelength spacing. Each sensor sample was assumed to be uncorrelated with the previous
sample. In the spatial smoothing case the samples were taken as overlapping subarrays (5
elements) from a single snapshot of a very large array. The bearings of the incoming signals
were 40, 50, and 120 degrees and they were all uncorrelated. Statistics were computed from

1000 trials for each value of K.

As predicted by equation (3.40), the decrease in variance for the covariance
method is a function of the factor 1/ K whether time averaging or spatial smoothing was
used. The same result holds true for the modified covariance method when time averaging
is used as predicted by equations (3.41) and §3.42). In the spatial smoothing case the
advantage of the modified covariance method over the covariance method begins to
disappear as K increases, exactly as predicted by these equations. The theoretical results
for Figures 3.4 and 3.5 based on the theoretical equations are not shown since they were
virtually indistinguishable from the simulated results.
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FIGURE 3.4: Normalized variance using time averaging
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FIGURE 3.5: Normalized variance using spatial smoothing

The results presented here do not predict the ultimate bearing accuracies of any
particular superresolution DF method, since the bearing estimation procedure is highly
nonlinear (although linear approximations are possible at high signal to noise ratios).
However, these results are useful for predicting some of the ways in which noise affects
bearing estimation as well as providing a measure of the merits of various autocorrelation

matrix estimation methods.
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40 THE MODELLING APPROACH

The key to improving the performance of DF estimators over that of classical
methods lies in taking better advantage of the form of the sensor data. As discussed in
section 2, determining the bearing of received signals is equivalent to the problem of
determining the frequencies of complex sinusoids in noise. Since the characteristics of the
signal and noise are different, they can be modelled separately.

4.1 THE SIGNAL MODEL

For a single signal in a noiseless environment, the data from the ntk sensor in an
N sensor system can be represented by equation (1.1) which is repeated here as

-jnwd
z, = (t)e” . (4.1)
An alternate representation for this equation is given by,

Tn = QoTni, (4.2)
where the coefficient

@w=-c¢ J“, (4.3)
and is easily computed from the data. The advantage of this alternate representation of
the data is that, at least in this case, it provides a simple method of extending the data
sequence and corresponding autocorrelation sequence indefinitely. The Fourier transform of
the infinitely extended autocorrelation sequence then results in the ideal DF spectrum.
Although the single bearing could also be determined directly from a,, the problem
becomes more difficult when several signals are involved.

In the multiple signal environment, again assuming no noise, the sensor data can
be represented by,

Tn = ic,,.(t)e""“""" , (4.4)

m=1

where the subscript m is used to distinguish between the M signals. The equivalent
alternate representation in this case is given by,

m=1
The relationship between the coefficients represented by an and the spatial frequencies of
the signals is not as clear cut as in the single signal case. However, a relationship does exist
as demonstrated in the following analysis.

To simplify this analysis, equation (4.4) is rewritten as,
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To= D Cnbm (4.6)

m=1
where for simplicity
cm = (1), (4.7)
and the complex signal poles p,, are defined as

Pn=e"™. (4.8)

Since the complex amplitude ¢, is of no interest for bearing determination, and noting
equation (4.6) forms a linear set of equations given by,

g ~ € - - C3 - . = Cy =0
-1 -1 -1 -1

Ty -capr - CP2 -€6Pp3 - ... -cupy = 0
-2 -2 -2 -2

I3 ~Copr - CPpr -Gpy - ... -cupu = 0 (4.9)
-Nst -N+| -N+l - N+l

Iyt~ Py - CP2 - CPp3 - ... - Cypy = 0

then cn, can be eliminated using standard techniques. For example, to remove the first
coefficient ¢ from any row (where each of the above equations is referred to as a row and
are ordered as shown), the row 1s multiplied by p; and then subtracted from the previous
rowu.l If the operation is performed on the last N-1 rows, the following set of N-1 equations
results:

- -1 -1
(z0-zp1) -cl-pp2') -l -pp3') - o -l ~pipw ) =0
-1 -2 -1 -2 -1 -2
(zi-2p1)  -cdpr —p1p2) -cps —-pip3) - ... -odpw —pipk’) =0
-2 -3 -2 -3 -2 -3
(z2-mp1)  -cApa —p1p2) -cps —pips) - ... -odpw —pipw) = 0 (4.10)
-N+2 -N+l ~-N+2 -Ns+l -~ N+ 2 - N+l
(zn.z—zn-npn)-cz(pa" -ppr ) -ep - g ) - o - edpu - pipk ) = 0

Removing any of the other coefficients proceeds in an identical manner. That is, to remove
¢ from a row, multiply the row by px and subtract it from the previous row. Note that
each time this operation is performed, the resultant set of equations is reduced by 1
equation.

If the procedure outlined above is carried through until all the coefficients c,, have
been removed, then the resultant N-M equations have the form given by equation (4.5)
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where,

aa = p+ p2+ p3+...+ Pu
Q2 = -pip2 - NP3 -...- PPy ~ ...~ Pu1Pu

a3 = pipps + Pwpps + ... + Papaps + ... + Du2DuiPu (4.11)

81 = (-1)Y(ppsps...pu + P1Pspa.Pu + ... + PiP2P4...Pu1)

au = (-1)*! (pip2pspaps...ou)

As in the single signal case, once the coefficients represented by ¢, have been determined,
the data sequence z, can be extended indefinitely. The resultant DF spectrum (computed
from the extended data set using either the direct or indirect methods discussed in section
1) can be used to exactly determine the signal bearings. Figure 4.1 shows an example of the
improvement in the DF spectrum using this technique compared to classical methocs.

IWr j
%0 —— Linear Prediction 4
sor -+ Classical Method

Power Spectral Density (dB)
8

00 120 140 160 180
Direction (degrees)

FIGURE 4.1: Comparison of the DF spectrum generated using the Linear
Prediction method and the Classical method for two signals of
equal power at 40 and 50 degrees.
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4.2 THE NOISE MODEL

In the case where noise is present, but no signals, the sensor output may be
represented by

T = 74(t). (4.12)

Since noise is not deterministic (i.e., not completely predictable}, it must be handled
statistically. For example, for complex white Gaussian noise, the autocorrelation sequence
is given by,

r(m) =0 for m 0, (4.13)
and
(0) = 02, (4.14)

where o2 is the variance of the noise process. This model is useful for modelling internal
sensor noise which is typically white Gaussian ncise (in the temporal sense) with the same
variance but uncorrelated between sensors. It is also useful for modelling external (e.g.
atmospheric noise) omnidirectional noise with equal power in all directions.

For diffuse external noise sources which have an unequal noise distribution with
direction, the noise can be modelled as filtered complex white Gaussian noise. That is,

K
=D butem (4.15)
m=0

where by = 1, K represents the order of the noise process, and ; represents a complex
Gaussian white noise process with a variance o2. Since v is not a deterministic signal, but a
stochastic process, some estimation method must be used to determine the optimum value
of the coefficients b, (as opposed to determining the exact values of an for the signal only
case discussed in the previous section).

The choice of the filter order K in equation (4.15) generally depends either on the
known characteristics of the noise (e.g. for white noise K = 0), or is limited by the amount
of available data. Since the autocorrelation sequence can only be estimated to lag N, then
K< N-1.

43 THE SIGNAL PLUS NOISE MODEL
One approach to improving spatial frequency, which follows from the previous
discussion in the preceding sections, is to combine the signal and noise models to give a

model capak’e of handling the signals plus noise problem. One such model is called an
autoregressive moving average (ARMA) filter and is given by,

In = ‘iam Znm + i,’m Un-m, (416)

m=1 m=0

Ideally the autoregressive (AR) filter coefficients represented by a,, are chosen to model the
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signals, and the moving average (MA) filter coefficients represented by b, are chosen to
model the noise. In practice, this is not always true, or possible. The methods used to
estimate these values are the basis of the various superresolution DF estimators discussed
in this report.

44 COMPUTING THE DF SPECTRUM

Once the values for a, and b, have been estimated, the data sequence, and
correspondingly the autocorrelation sequence can be extended indefinitely by computing
the unknown values of z,. The Fourier transform of the extended autocorrelation sequence
then gives the power spectral density function.

Computationally, the direct method of computing the power spectral density
function from the data sequence is simpler and is given by

S(¢) = X($)X(¢); (4.17)
where X(¢) is the Fourier transform of the extended data sequence.

X(¢) may also be computed from equation (4.16) by taking the Fourier transform
of both sides to give,

X8 =S an X(8) € + S by Vg) €™ (4.18)
m={ m=0
and then rearranging to get
B
X(¢) = 7% va), (4.19)
where
Alg) =1+ ia,,. e ™ (4.20)
m=1
and
B(¢) = ib,,. e ™ (4.21)
m=0
Substituting equations (4.3) and (4.5) back into equation 34.2), the power spectral
density function can be computed based on the coefficients, a, and b, That is,
B(¢)B*
S(9) = V(9)V*(g) ELOELE) (4.22)

A(9)A*(9)

Since for a white noise process
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g)V¥(4) = o, (4.23)

where o2 is the variance of the noise, then

S(¢) = azw. (4.24)
A(¢)A7(¢)

The matrix representation of equation (4.24) is,

S(¢) = 24° j—':%:f‘ , (4.25)
P

where e, and e, are p+1 and ¢+1 element steering vectors (described in section 2.3.1
and defined by equation (2.18)), the autoregressive filter coefficient vector a is defined as

1
a)

a=|%], (4.26)
g

and the moving average coefficient vector b is defined as

b=| 2] (4.27)

For spectral estimation purposes, equation (4.25) is useful. However, since
ultimately the goal is to determine signal bearings, a simpler form of the DF spectrum can
be used. For example, the main interest in the DF spectrum is its shape (i.e. to locate the
signal peaks), and consequently only the relative values of the actual spectrum are needed.
Therefore the noise coefficient 202 can be ignored resulting in the expression,

_ ellbb'e
S(¢) = ;’;—H;: . (4.28)

A further simplification can be made based on the observation that if the
coefficients represented by b, are chosen to model the noise only, they provide no
information on the location of the signal peaks and in fact, could make it more difficult to
determine the location of the true peaks by masking them. This observation does not
simplify the task of calculating these coefficients, but it does result in the simplified DF
spectrum given by,

1

elaate,

(4.29)

S¢) =
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5.0 DF ESTIMATORS

In the following sections, DF estimators which are inherently based on the
modelling concepts discussed in section 4, are discussed. In filter terminology these
estimators may be divided into three classes, namely, all zero, all pole, and polezero [3-1].

5.1 ALL ZERO ESTIMATORS

In all zero estimators, or more commonly called moving average (MA) estimators,
only the moving average part of the ARMA filter given by equation (4.16) model is used.
The values of the autoregressive parameters a, are set to equal 0, giving,

Im = ib,. Vmeny (5.1)
n=0

where v represents a complex white Gaussian noise source. The DF spectrum can be
derived from equation (4.28) by noting that the coefficients a, all equal to zero resulting in
the expression,

S(9) = e'bb'e,. (5.2)

From the discussion in section 4, the MA model was shown to be appropriate for
modelling noise-like processes in the DF spectrum (e.g. spatial noise which has broad
spectral peaks and sharp nulls). Although it was also shown in section 4 that signals can be
accurately modelled using an all pole filter model, the MA model can also be used to model
signals, albeit with reduced efficiency. That is, a large number of filter coefficients,
compared to the numbers of signals, may be required to provide an accurate DF spectrum.

Further insight into the properties of MA estimators can be gained comparing
equation (5.2) to the classical estimator defined by,

S8 = > ralme™ (53)

nz-q

where estimation of the autocorrelation lags is discussed in section 1. Provided that the
autocorrelation sequence results in a positive spectrum (S(¢) > 0 for all ¢) then equation
(5.3) can be factored into the form given by (see also Appendix A),

S(¢) = ib,,e"“"‘“ ib;e"“’"‘, _ (5.4)
n=0 n=0

where in this case the coefficients represented by b, are computed from the autocorrelation
lags. The matrix form of this expression is identical to equation (5.2). In other words,
although the underlying development philosophy is different, classical DF estimators (as
described in this report) are a subclass of moving average estimators [5-1].

From this analysis, it is apparent that the performance of moving average

estimators would not be expected to significantly improve on the performance of classical
estimators. In general, the performance limitations of moving average estimators can be
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viewed as a failure of the model to extend the data sequence beyond the known data. A
consequence of this fact is that the white noise process v in equation (5.1) is not
predictable, and so unknown values cannot be predicted.

5.2 ALL POLE ESTIMATORS

In the all pole model, only the autoregressive part of the ARMA filter defined by y
equation (4.16) is used. The values of the moving average coefficients b, are set to 0,

giving,

In = "ian Znn + Un (55)

n=1

From the discussion in section 4, it is apparent that this model is more appropriate for
generating DF spectra which contain signal peaks, than are MA techniques. As a result, the
all pole estimators discussed in the following sections are generally superior, in terms of
accuracy, for direction finding purposes than are MA and classical techniques. As a result,
these estimators are often called superresolution DF methods. The differences in the
following methods are in the manner that the filter coefficients a, are selected (although in
some of these methods a, is not calculated directly).

5.2.1  Autoregressive Method

The Autoregressive (AR) method is based on defining the autocorrelation sequence
using equation (5.5) and the relationships defined in section 2.1.1 to give,

rn(m) = —ia’, r,,(m—n) for all m>0, (56) .
n=|
and for m =0, ’
7::(0) = -ia,, r-n) + o (5.7
n=l

Equations (5.6) and (5.7) are known as the Yule-Walker equations or normal equations,
and are also sometimes referred to as the discrete-time Wiener-Hopf equations. Once the
values of the coefficients e, have been determined, the autocorrelation sequence can be
extended infinitely, and an improved estimate of the spectrum calculated.

Equations (5.6) and (5.7) can be incorporated into a single matrix equation, called
the augmented normal equations, to give,

Ra = o2, (5.8)

where R is the (p+1)x(p+1) augmented autocorrelation matrix, the coefficient vector a
was defined previously by equation (4.26), and wu is a p+1 element unit vector defined as,
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a=| .. (5.9)
0

oM

Assuming the autocorrelation matrix R is invertible (in the presence of white Gaussian
noise R will be full rank and invertible although when estimated the result may not be),
equation (5.8) can be rewritten in terms of a as,

a=oR', (5.10)

In cases where R is not invertible, the method of solution of a is discussed in section 7.1.
Alternatively, if only the location of spectral peaks and their power with respect to

the rest of the spectrum is required, it is only necessary to solve for the coefficients a,
using the linear set of equations represented by equation (5.6). In matrix form this set of
equations can be expressed by,

R,W = -I, (5.11)
where R, is the pxp normal autocorrelation matrix, w is the coefficient vector defined by

a
az

w=| 8| (5.12)

r‘:’il;
T2
r=| ™=9) | (5.13)

re(p)

Assuming the autocorrelation matrix R, is invertible, then equation (5.11) can be rewritten
in terms of w as

and r is the vector defined by

w = -R;'r, (5.14)
In cases where R, is not invertible, the method of solving w is described in section 7.2.

The vector r can also be defined by noting that the augmented autocorrelation
matrix R can be partitioned in terms of r and R, as
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R= [ rd0) ; 2t (5.15)

B T Ili;

Although these two definitions of r are equivalent, the second definition is more useful
when the estimated autocorrelation matrix (discussed in section 3) is used in place of the
true autocorrelation matrix. In this case the true values in equation (5.15) are simply
replaced by their appropriate estimates.

A simple relationship also exists between the coefficient vectors a and w, namely,

a= [1] (5.16)

w

Once the coefficients have been determined, the power spectral density function
can be calculated using equation (4.29) which is repeated here as,

OS¢y = —1— .
(0= i

In terms of the augmented autocorrelation matrix and the solution for the vector a given in
equation (5.9), the DF spectrum for the Autoregressive method may also be expressed as,

(5.17)

1

Su(9) = ————;,
! eiR'uuR'e,

(5.18)

where the scaling factor o? has been ignored.
52.2 Maximum Entropy Method

The Maximum Entropy (ME) method [5-2] is closely related to the Autoregressive
method. In this method the extrapolation of the autocorrelation sequence is made in such a
way as to maximize the entropy of the data series represented by the sequence. The data
series would then be the most random, in an entropy sense, of all possible series which
include the known autocorrelation lags as part of the sequence.

The entropy rate for a Gaussian random process is proportional to

[l 501 da (5.19)

where the spatial frequency wis defined in terms of the bearing ¢ by equation (1.2),
wo = 7/d, and the power spectral density function is represented by

+ o

S(¢) = > rum) ™™ (5.20)

ms-ow

To maximize the entropy, the derivative of equation (5.19) is taken with respect to the
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unknown autocorrelation lags Si.e. r(m) where |m| > p are the unknown
autocorrelation lags). This leads to

0(4)0 —]wﬂ'ld
J‘-w&m— dw=0 for |m| > p. (5.21)

[+]

Equation (5.21) implies that 3-%3)- has a finite Fourier expansion, that is,

3%757 = ic,,. e (5.22)

m=-p

where ¢, = ¢.,. The summation term on the right hand side of this expression can be
factored (see Appendix A), as long as S(¢) > 0 for all ¢, and the resultant expression

inverted to give,
1
S
m=0 m=0

S(¢) = (5.23)

The matrix form is given by,

1
efaale,

From this analysis, it is clear that the maximum entropy method belongs to the
class of all pole DF estimators. Additionally it has been shown f5-3] that for the problem of
signals in white Gaussian noise, and a uniform linear antenna array, the Maximum
Entropy method is identical to the Autoregressive method (i.e. Suz( @) = Sw(@)). For
other types of noise or antenna spacings, the two methods are not identical.

Sue(¢) = (5.24)

In the case of non-uniform antenna spacing, the maximum entropy solution for the
set of equations represented by equation (5.21) usually requires some form of gradient
search technique. This can lead to a number of practical difficulties which are not
addressed in this report.

5.2.3 Linear Prediction Method

In time series modelling the Linear Prediction (LP) method predicts either a
future or past data value using a sequence of current data values. In direction finding, this
is equivalent to predicting either the first sensor (backward prediction), the last sensor
(forward prediction), or both the first and last sensor (forward-backward prediction) in a
group of sensors. These three types of predictors are described in the sections 5.2.3.1 to
5.2.3.3.
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5.2.3.1 Forward Linear Prediction

Mathematically, the forward prediction case can be expressed as,

Im = 'ﬁ:a]n Tm-ns (5'25)

n=zl

where the subscript f is used to denote the forward prediction case. The error in the
estimate of z, is given by,

-

€fm = Tn~ I (5.26)

The values of the coefficients, a;,, are determined by minimizing the variance of
the error given by,

v = B{| efnl} = E{ejn e/}, (5.27)

where the error is assumed to be a zero mean process. To minimize this value, the
derivative is taken with respect to each of the coefficients, ap’, giving

ovr y _

E{'BE‘;?} =0, (5.28)
which, using the results from equations (5.25)(5.27) and given that -g%;f: = 0, simplifies to,
*

E{e/m Zms} = 0. (5.29)

Replacing ¢;n by equation (5.26), ;m by equation (3.25), and expanding gives,

E{zn, I::—k} + E{ 2%. Tnn z:,k} =0, (5.30)

n=zl

where 0 < k < p. This results in a system of linear equations that can be expressed in terms
of the autocorrelation parameters as,

(k) + iaf,, Tz{k-n) = 0. (5.31)

n=1

Additionally, by incorporating equation (5.26) into the right side of equation
(5.27) and expanding, the optimum variance is given by

* ~%
Vo = E{e/m Zn} - E{efm Tm}. (5.32)

~%
Replacing z. by the conjugate of equation (5.25) and then applying the result from
equation (5.29) in order to simplify, then
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*
Vfopt = E{e/m Tn}- (5.33)

Again expanding in terms of equation (5.26),
Vs = Bl2n 2n} + B{ iafn Zmn Tns (5.34)
n=1

and re-expressing the result in terms of the autocorrelation parameters,

Uy, = 7::(0) +iaf,. T2l -m). (5.35)
n=1
The system of equations described by equations (5.31) and (5.35) can be
represented in matrix form as,

Rﬂ/ = ‘Ufop‘u, (5.36)

which is identical in form to equation (5.8), the Autoregressive model system equations. In
fact, for the problem of signals in white Gaussian noise, the Linear Prediction method and
the Autoregressive method are identical [5-4]. The corresponding DF spectrum then is
given by equation (5.18) (i.e. S;p(@) = Sua(9))-

In the case where the true autocorrelation matrix is unknown, the matrix R in
equation (5.36) is replaced by the estimated autocorrelation defined by,

R = X/X] (5.37)
where X is the forward data matrix given by one of equations (3.7), (3.10), or (3.12) (the
concept of forward and backward data originated in linear prediction research
[5-2],(5-5],(5-6])-
5.2.3.2 Backward Linear Prediction

The case of the backward prediction coefficients proceeds in much the same
manner, where the backward estimate is defined as

Azm = ‘iabﬁ me, (5-38)

nzl

and the subscript b is used to denote the backward prediction case. The final result is
given by,

r22(-k) + iab,, rnk) =0  for 0<k<p, (5.39)
nzl

and
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r22(0) + iam rz(n) = Vb for k=0. (5.40)

n=1

The equivalent matrix solution then is,
T
Ra;,= v,,op‘u. (541)

‘ By taking advantage of the fact that the autocorrelation matrix is Hermitian, that
is,
T * :
R =R, (5.42)

and complex conjugating both sides of equation (5.41) gives

Ra; = v, (5.43)

ot
Since this is identical in form to the Autoregressive equations 315.8 , the expression for DF
spectrum for the backward linear predictor is the same as for the Autoregressive method
given by equation (5.18).

Equation (5.43) is also identical in form to equation (5.36), so that the solution for

the backward coefficients and error variance can be expressed in terms of the forward
values as,

Ubppe = Vfgpo (5.44)

and

Qnp = aﬁ,. (5.45)

As in the forward case, when the true autocorrelation matrix is unknown, an
estimate is used in its place which is defined by,

R = XX, (5.46)
where X, is the backward data matrix given by one of equations (3.8), (3.11), or (3.13).
5.2.3.3 Forward-Backward Linear Prediction
In practice, when the estimated autocorrelation matrix is used, the conjugate
relationship between forward and backward coefficients expressed by equation (5.45) is not

true if the coefficients are calculated separately. However, by constraining these
coefficients to satisfy this relationship,

oy = Gny = 0o, (5.47)

and solving the forward and backward prediction equations (5..6) and (5.43)

40




simultaneously, a better estimate of the coefficients, for spectral estimation purposes,
results. This method is called the Forward-Backward Linear Prediction (FBLP) method.

The solution can be derived by minimizing the quantity v, + v, subject to the
constraint given by equation (5.47). Following the same sort of derivation as used
previously in the forward or backward cases the result in matrix form is,

Ra=1vy _u (5.48)

Again the DF spectrum is given by equation (5.18) (i.e. Si/¢) = Six(9))-

The estimated autocorrelation matrix used in the least mean square solution is the
modified covariance estimate defined by,

R = X,X] + XXy = XpXp, (5.49)
where X, is given by equation (3.16).
5.2.4 Minimum Variance Method

The Minimum Variance (MV) method is based on the output of a beamformer
which passes all energy arriving from the look direction and adaptively minimizes, in an
optimal manner, the energy arriving from all other directions [5-7]. This is equivalent to
minimizing the variance of the beamformer output subject to the constraint that
beamformer gain is unity in the look direction. '

The mathematical derivation proceeds as follows. Consider the output of a
beamformer given by,

Yn = ick Tk (5.50)
k=0

where there are N antennas in the antenna array, and each output y, is formed from a
subarray of p antennas. In matrix notation the system of equations embodied by equation
(5.50) can be rewritten as,

y = X, (5.51)
where the output vector y is defined by
Yo
1 ”
_ Y2 52
Y= N Ll (5.52)
Yw-p

the data matrix X is identical to the forward data matrix X, defined by equation (3.12)
and the beamformer weights vector c is given by,
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Co
C1

c=| | (5.53)
2
The beamformer output variance is given by

v= E{y'y}, (5.54)

which can be rewritten in terms of the input data as,

v = E{c"XX"c} = c"Re, (5.55)
where R is the autocorrelation matrix.

Assuming the antenna array is uniform and linear, the transfer function of the
beamformer is given by,

H(¢) = i o €™, (5.56)
k=0

Given that the direction of interest is represented by ¢o, then the beamformer gain will be
constrained so that

H{¢o) = 1. (5.57)

Expressed in matrix form,

e(go)c = c'e(¢n) = 1, (5.58)
where () is the p+1 element steering vector e (defined by equation 2.19) evaluated at

= ¢o

The beamformer coefficients, ¢, are then derived by minimizing the variance
defined in equation (5.55) subject to the constraint represented by equation (5.58). The
solution technique for this problem is to use the Lagrange multiplier (5-8] which involves
minimizing the expression

F = c'Re + &ce(o) - 1), (5.59)
with respect to the coefficient ¢’ (minimizing with respect to § yields the original
constraint equation given by equation (5.58)). Performing this minimization yields the
system of equations expressed in matrix form as,

Re + de(¢o) = 0, (5.60)

where Q isa p+1 element column vector whose elements are all 0.
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The final solution for the beamformer coefficients comes by first solving equations
(5.58) and (5.60) to eliminate ¢ and then expressing & in terms of e(¢o) and R, which .
gives,

R — (5.61)
e"(go)R'e( 40)

then substituting this expression back into equation (5.60) and solving for ‘¢ gives
-1
c=—R_eldo) (5.62)
e(do) 'R 'e(41)

Finally, the minimum variance equation can be rewritten by incorporating this
expression for ¢ back into equation (5.55). The result is,

Vopt (5.63)

=1
e(¢0) R (o)

This equation represents the power output of the beamformer for the chosen look direction
corresponding to the spatial frequency @o. The beamformer power output for any
direction, then, is given by,

eR e

An important difference between this estimator and the other estimators discussed
is that the Minimum Variance estimator determines the power (using equation 5.64) of the
signal in the look direction, not the power density. The advantage is that the power of the
signals can be determined by the height of the peaks in the DF spectrum. The disadvantage
is poorer resolution (see section 5.4).

The all pole nature of this estimator is easily shown by noting that the
denominator term in equation (5.64) can be factored as (see Appendix A),

e'R'le = e'aa'le. (5.65)

In the case where an estimate of R is used, a necessary condition is ¢"Rle > 0 for all é
(see Appendix A). The resultant estimator then has the all pole form represented by
equation (4.29).

525 Thermal Noise Method

The Thermal Noise method (TN) is based on a beamformer which functions in a
similar way to the Minimum Variance beamformer except the gain is not constrained to
unity in the look directionis-g]. For example, based on the previous derivation of the

Minimum Variance method, the weight coefficient vector can be defined in terms of
equation (5.60) to get,

c=-0R'e, (5.66)
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where 6 was originally defined by equation (5.61). If the gain constraint for the look

direction is chosen to be some arbitrary nonzero function with respect to the look angle ¢,,

equation (5.66) remains unchanged, but ¢ will be modified according to the new gain

(ci(l)nstra_int. In other words, the purpose of § is to control the gain of the array in the look
irection.

In the Thermal Noise method the parameter 6 is set to -1 with the resulting weight
coefficient vector given by,

c=Re (5.67)

For this choice of weight vector the beamformer adaptively minimizes all energy arriving
from all directions. The output in this case is noise only, that is, in equation (5.50) the
beamformer output y, represents a noise process which has been called "thermal noise".

Since this approach is very similar in concept to the Autoregressive Method, the
DF spectrum is computed in an almost identical manner. That is,

S5(¢) = (5.68)

+ ’
H(¢) H(¢)

where H(¢) in this case is the overall beamformer transfer function (compared to equation
(5.56) which is the transfer function for a particular look angle). The function H{¢$) H(¢)
can be determined by deriving the output power spectrum in response to a white noise
input with a variance of 1. For example, given the input white noise process U(¢) the
output spectrum is given by,

(¢) = U(¢)H(¢), (5.69)
and the output power spectrum is given by,
9) VI9) = U(8) LIS)H(P) H(9) (5.70)

*x
Since U(¢) is a white noise process with variance of 1, then U{¢) U(¢) = 1. Simplifying
equation (5.70) then,

V(6) V() = H($) H(¢). (5.71)

In other words for a white noise input, the output spectrum is identical to the beamformer
transfer function.

The matrix form output power for equation (5.71) is given by equatior (5.55)
which is repeated here as,

V8) V(4) = c'Rc. (5.72)

Using the fact that the autocorrelation matrix for a white noise process is given by oI
where the variance ¢2=1, then equation (5.72) simplifies to,
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V(9) V9) = ¢ (5.73)

Finally using the results from equations (5.67), (5.68), (5.71), and (5.73), the DF spectrum
for the Thermal Noise method is given by,

StM(¢) = (5.74)
e e

As in the case of the MV estimator, the all pole nature of this estimator is easily
shown by noting that the denominator term in equation (5.74) can be factored as,

e'R% = e'aa'le, (5.75)

which assumes that S(¢) > 0 for all ¢ (see Appendix A). The resultant estimator then has
the all pole form represented by equation (4.29).

53 POLE-ZERO ESTIMATORS

In section 4.3 it was shown that the autoregressive moving average (ARMA) filter
was best suited for modelling signal in noise problems. Ideally the moving average (or all
zero) part of the filter models the noise and the autoregressive (or all pole) part models the
signal. In practice development of computationally fast algorithms based on the ideal
ARMA have not been as successful as the all pole models. Current methods typically rely
on using time consuming search algorithms, which are largely inappropriate for real time
applications (at least until faster hardware is available). For this reason, these types of
estimators are not considered in this report.

One pole-zero based method, the Adaptive Angular Response method, is
considered since, as will be seen, this method is a simple modification of an all pole
method.

5.3.1 Adaptive Angular Response

The Minimum Variance method can be modified to give the power density
(instead of power) by dividing the Minimum Variance beamformer output by the effective
noise beamwidth of the beamformer to get the average power density in the beam. In the
Adaptive Angular Response (AAR) method, this technique is used to give an estimate of
the true spectral power density function [5-10],[5-11]. Expressed mathematically,

s(¢) = 44} (5.76)

where S,y(¢) was defined previously by equation (5.64), and - By(¢) is the effective noise
bandwidth of the beamformer.

Evaluated for a particular look direction (i.e. ¢ = ¢o) the effective beamwidth can
be calculated using,

45




[ 19)1” ds

|H(go)|”

where the bearing angle ¢ is expressed in radians. The transfer function, H(¢), for a
Minimum Variance beamformer was previously defined by equation (5.56), and can be
expressed in matrix form as,

B ¢o) = (5.77)

H(g) = c'e. (5.78)
Incorporating this expression into equation (5.77) and recalling that H{¢o) = 1, then

By(¢o) = J: e cocoe do = Coco, (5.79)

where ¢ is the coefficient vector ¢ evaluated at ¢ = ¢o. Generalizing this 2xpression for
any value of ¢ and then substituting back into equation (5.76) gives,

5(¢) = Su() (5.80)

ccC

Using the expression for Syy(¢) given by equation (5.64) and the generalized form (i.e.
any look direction) of equation (5.62) for ¢, the final result is,

e'Rle

. 5.81
e'R% (58

Sua(9) =

5.4 A COMPARISON OF DF ESTIMATORS

In this section, five different DF methods are compared which are representative of
the approaches discussed up to this point. The DF estimators associated with these
methods are summarized here as:

1. Bartlett (section 2.3.2): Sparr($) = etRe (5.82)

2. Autoregressive (section 5.2.1):

Maximum Entropy (section 5.2.2): Sil(@) = —-1-1——1— (5.83)
e'R'umu'"R’e
Linear Prediction (section 5.2.3):
3. Minimum Variance (section 5.2.4): S @) = TRI_T' (5.84)
eR e
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4. Thermal Noise (section 5.2.5): S P) = = (5.85)
e'R e
hy!
5.  Adaptive Angular Response (section 5.3.2): Sux(9) = 3—_.‘,9 (5.86)
: eR'e

Note that for p < N-1, the Bartlett method becomes the Welch method [5-12).

In the simulation examples that follow (unless otherwise indicated), the signal
environment consisted of three signals of equal powers and bearings of 40, 50, and 120
degrees. The direction finding array consisted of 8 colinear sensors with half wavelength
spacing. Noise between sensors was uncorrelated. Signal phases and sensor noise were also
uncorrelated from trial to trial where each trial consisted of estimating the bearings as the
signal to noise ratios were varied from 5 to 65 dB in 1 dB steps (the noise was scaled
accordingly for each step). Bearing error variance statistics were based on 300 such trials.

Bearing errors were calculated by determining the bearing of the three largest
peaks in the spectrum and subtracting these values from the corresponding true values.
Bearing accuracy was then calculated as the root mean squared value of these errors.
Justification for choosing the three largest peaks in the spectrum is based on the fact that
the heights of the peaks are generally related to the square of the corresponding signal
power Fexcept for the Bartlett and Minimum Variance methods where the peaks are
proportional) {5-4],[5-9]. Although this is not necessarily the optimal method for choosing
the correct signal peaks, it is useful for comparing various methods and highlighting the
problems involved.

Since multipath is considered to bc the most significant problem in tactical DF at
VHF/UHF, the autocorrelation matrix estimates were generated from single sample
samples (i.e. T = 1) using spatial smoothing. The choice of the model order p for spatial
smoothing purposes was mainly based on choosing the model order for which estimator
accuracy was the highest for a given signal to noise ratio as shown in Figure 5.1. The-
variance of the bearing estimates for each value of p were computed from 300 trials at a
fixed signal to noise ratio of 50 dB.

108 s .
—————  Linear Prediction
wl e Minimum Variance
............ Thermal Noise

1 T
102
10'
00

101}

Bearing Error Variance (deg®deg)

102

10° R o

Model Order (p)
FIGURE 5.1:  Bearing error variance as a function of the model order p
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For the Linear Prediction, and Minimum Variance methods the optimum choice
based on Figure 5.1 was p = 4, and for the Adaptive Angular Response method the
optimum choice was p = 3. Although the optimum choice for the Thermal Noise method
using Figure 5.1 is p = 4, it was found in simulations that this method performed better at
lower signal to noise ratios for a model order of p = 3 with only a marginal decrease in
accuracy. For this reason, a model order of p = 3 was used in simulations involving the
Thermal Noise method. (Note model order selection for situations where the true signal
bearings are unknown is discussed in section 10).
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FIGURE 5.2: DF Spectrum of the Bartlett method for the noiseless case
(dashed lines show the true signal bearings).

Figure 5.2 provides an example of the DF spectrum generated using the Bartlett
estimator in a noiseless environment. As mentioned before, the resolution of classical and
moving average methods is poor as illustrated in this example (i.e. the bearings at 40 and
50 degrees are unresolved). For this reason, the Bartlett estimator is not considered in the
following simulation examples.

Of the matrix estimation schemes, the results in section 3.6 implied that under the
same conditions, the modified covariance method was superior to the covariance method.
These results are confirmed in Figure 5.3 which illustrates the improvement in the Thermal
Noise estimator accuracy versus signal to noise ratio using the two different methods. In
this particular example, the ¢- variance method produced results which were about 10 dB
poorer in terms of the signal to noise ratio than the modified covariance method. This is
worse than would be predicted from the results given in section 3.6 and probably due to the
fact that the autocorrelation matrix estimate for the covariance method was not full rank
which degrades the results somewhat. Results using other estimators are similar. For these
reasons, all further comparisons between estimators in this and later sections is done using
the modified covariance method.
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FIGURE 5.3: Comparison of the Covariance and Modified Covariance methods
used in conjunction with the Minimum Variance method.

Figure 5.4 compares the performance of 4 DF estimators. From the results shown
it is clear that at high signal to noise ratios the estimators are well behaved with the
bearing error variance inversely proportional to the signal to noise ratio. In terms of the
mean elemental variance of the estimated autocorrelation matrix (described in section 3.6),
the bearing variance is directly proportional to the elemental variance. This is in keeping
with the comment that at high signal to noise ratios estimator performance will be
approximately linear.
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FIGURE 5.4: Comparison of DF estimators
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In terms of estimator accuracy, at high signal to noise ratios, the Linear Prediction
and Minimum Variance methods had the best performance. At lower signal to noise ratios,
estimator performance in Figure 5.4 departs dramatically from their linear behaviour. The
point at which this failure occurs is called threshold. In terms of threshold effects, the best
performance was achieved equally by the Adaptive Angular Response, Linear Predicticn,
and Thermal Noise methods, while the Minimum Variance method had the poorest
performance. In all of these methods for this simulation, the threshold effect was caused by
merging of the signal peaks at 40 and 50 degrees in the DF spectrum. Consequently the
lower the threshold, the better the resolution of the method.

Although the Adaptive Angular Response method performed reasonably well in
these simulations, this method was extremely sensitive to model order as Figure 5.1
indicates. At higher model orders (p > 3) the performance of this method was extremely
poor (e.g. see Figure 5.1). This is due to two effects, spurious peaks in the DF spectrum
which are mistaken for true signal peaks, and spectral peak inversion. The spectral peak
inversion problem is illustrated in Figure 5.5. To understand the cause, it is useful to note
that the spectrum of the Adaptive Angular Response estimator is simply the ratio of the
Thermal Noise DF spectrum divided by the Minimum Variance DF spectrum at any
particular bearing. Normally the peaks in the Thermal Noise spectrum are larger than the
corresponding peaks in the Minimum Variance spectrum so that the resultant Adaptive
Angular Response spectrum has positive peaks. Occasionally the opposite is true with the
result that the resultant peaks are inverted, i.e., valleys are formed where the peaks should
be. Given these problems, the choice of model order for the Adaptive Angular Response
method appears to be limited to p = M which ensures that a maximum of only M peaks
will exist in the DF spectrum (no spurious peaks), and at least for the simulations
performed for Figure 5.4, avoids the spectral inversion problem.

Power Spectral Density (dB)

L
1t - !
X P A ;
% W0 60 %0

20 100 120 140 160 180

Direction (degrees)

FIGURE 5.5:  Spectral peak inversion in the Adaptive Angular Response DF
spectrum (dashed lines show the true signal bearingsgm
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The form of the Thermal Noise estimator (equation (5.85)) provides a useful basis
of comparison with the other estimators. For example the only difference between the
Thermal Noise estimator and the Minimum Variance estimator (equation 5.84) is the
power to which the inverse autocorrelation matrix is raised. Squaring has the effect of
making the peaks in the DF spectrum more pronounced which potentially improves the
resolution capabilities of the method. This explains the poor performance of the Minimum
Variance method for p = 3 in Figure 5.1 where in a number of trials the signals at 40 and
50 degrees were not resolved. Raising the inverse autocorrelation matrix to higher powers is
possible, but this also has the effect of emphasizing spurious peaks which can degrade
performance of the estimator. Figure 5.6 illustrates these effects for various powers using
the estimator defined by

1
eR ™"

5(¢) = (5.87)

where m = 1 for the Minimum Variance method and m = 2 for the Thermal Noise method.
The generated spectrums have also been offset for clarity.
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FIGURE 5.6:  Spectrum of the DF estimator defined by equation (5.87) usin
various power of m (dashed lines show the true signal bearings%.

As mentioned earlier, the choice of model order for the Thermal Noise method in
Figure 5.4 was p = 3, even though accuracy was better for p = 4 based on the results
shown in Figure 5.1. It was found, however, that in simulations where p = 4 the threshold
of the Thermal Noise method degraded to that of the Minimum Variance method shown in

Figure 5.4. At higher orders the accuracy decreased significantly and spurious estimates
were a problem.

In comparing the Linear Prediction method to the Thermal Noise method, it is
useful to rewrite equation (5.85) for the Thermal Noise estimator as,
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Sru(¢) = L , (5.88)
e'( i R 'wuiR e
i=0

where u; is a p+1 element column vector of zeros with a 1 in the itk position. In this form
the Thermal Noise method is clearly related to the Linear Prediction method (equation
85.83) except whereas the Linear Prediction method is based on using a single prediction

lter (i = 0 for forward prediction and ¢ = p for backward prediction) the Thermal Noise
method combines the power outputs from p+1 filters where the itk filter predicts g)r
interpolates) the ith element in the sensor subarray being processed. The outputs from each
of these filters is also inversely weighted according to the prediction error variance, i.e., the
better the filter model fit with the data the greater the weighting.

In equation (5.88) each of the p filters can be determined independently. Equation
(5.85) then performs an average of the weighted filter outputs. This is different from the
idea of forward-backward linear prediction which constrains the forward and backward
filter coefficients to be related before the coefficients are calculated.

For comparison purposes it is also useful to define the null spectrum as,

D(¢) =1, (5.89)
S(#)

so-called since nulls in D ¢) correspond to peaks in the DF spectrum. The null spectrum of
the Thermal Noise method can also be interpreted as the average of the null spectrums of
the p+1 individual prediction/interpolation filters. A disadvantage of the Thermal Noise
method is that in cases where the estimated autocorrelation matrix is used, each
prediction/interpolation filter will produce nulls in its own null spectrum at slightly
different bearings. Averaging the nulls together, unless they are exactly aligned, decreases
the overall null depth resulting in smaller peaks in the DF spectrum and poorer resolution
compared to the case where only a single filter is used (i.e. linear prediction). An
advantage, however, is that averaging also increases the immunity to spurious peaks since
the corresponding spurious nulls in the individual null spectrums often don’t occur at the
same bearing and as a result the corresponding spurious peaks are smoothed out in the DF
spectrum.

Ideally averaging the null spectrums in the Thermal Noise method should also lead
to more stable estimates. In practice it has been found that the error variance and spurious
performance of the DF estimator defined by,

Np) = —2 5.90
9) e R 'nuR'e (590)

is a nonlinear function of |- 0.5p|. That is, the accuracy and suppression of spurious peaks
is best for the linear prediction case where the outside data values in the sensor subarray
are being predicted (¢ = 0 or ¢ = p) and is worst when the middle data value(s) of the
sensor subarray are being interpolated (¢ = 0.5p or i= 0.5(p+1)). As a result, the
accuracy of the Thermal Noise method was slightly poorer than the Linear Prediction
method.
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An example of these effects is shown in Figure 5.7 where the DF spectrum of the
Thermal Noise method is compared to the spectrums generated using equation 5.90. Each
of the DF spectrums have been offset for clarity, and the spectrums corresponding to i = 3,
and : = 4 have not been plotted since these are identical to the spectrums corresponding to
. = 0 and ¢ = 1 respectively. In comparing the various spectrums, the spectrum for i = 2
has the poorest accuracy (i.e. the peaks corresponding to the 40 and 50 degree signal
bearings exhibit greater error) and also contains a large spurious peak at 110 degrees
(although this has little effect on the Thermal Noise spectrum). In comparison, the
spectrum for ¢ = 0, the Linear Prediction spectrum, has the best accuracy.
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FIGURE 5.7:  DF spectrums for the Thermal Noise method and the
corresponding spectrums of the prediction/interpolation filters
(dashed lines show the true signal bearings).

Based on the results of comparisons between the various DF estimators, two
criteria are clearly important in determining estimator performance. The first is estimator
accuracy above threshold, and the second is the signal to noise ratio where threshold
occurs. In terms of accuracy, methods which operate using higher model orders achieve
better accuracy above threshold. The signal to noise ratio at which threshold occurs is a
function of estimator resolution - the better the resolving abilities of the estimator the
lower the threshold (where two signals close in bearing are considered resolved when two
corresponding closely spaced peaks are formed in the DF spectrum). In terms of this
criteria, the Linear Prediction method had the best performance for the simulations
summarized by Figure 5.4.
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6.0 SIGNAL AND NOISE SUBSPACE DIVISION

In many practical situations, the sensor data is the measurement of a signal or
signals corrupted by noise. Since the signal spectrum is of primary interest, the addition of
noise only clouds the issue. The all pole type spectral estimators discussed to this point
(which include AR, LP, ME, MV, and TN) are based on models which do not specifically
address this issue, so consequently, as the input signal to noise ratio decreases, the spectral
estimator performance degrades.

An example of this can be illustrated by considering the problem of direction
finding on several point sources when the sensor data is corrupted by uncorrelated complex
white Gaussian noise. The resultant sensor data can be represented by,

Im = Sm + T (6.1)

Here s, represents the uncorrupted sensor inputs (i.e. the sensor inputs in the absence of
noise) which can be modelled exactly by an all pole model (see Section 4.1) given as,

Sm = -iCn S1n-n. (6.2)

n=1

The process n,, represents uncorrelated complex white Gaussian noise with variance 72.
The exact spectrum of z, is given by,

S(¢) = —L1— + 2, (6.3)
anc@
or alternatively,
aA)C*(4)
where,
a¢)=1+ ic,. e, (6.5)
n=1

Clearly, from the form of equation (6.4), S(¢) is the spectrum of an ARMA process. That.
is, the addition of complex white Gaussian noise to an all pole process results in an ARMA
process.

From the preceding analysis it is apparent that the ARMA spectral estimator
would be the most appropriate choice for estimating the spectrum of z,. However, as
mentioned before, this results in a difficult non-linear search problem, so all pole estimators
are often used instead. Using any of the all pole methods, the estimated spectrum has the
form,
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S(4) = ——. (6:6)
A(¢)4%(¢)

In comparing the expression for the estimated spectrum to the expression for the true
spectrum, equation &.4), it is quite clear that the estimated spectrum will only approach
the true spectrum as the additive noise power, 72, approaches 0. Conversely, the addition
of noise degrades the estimated spectrum.

If a method could be developed which would remove most of the noise before
processing with an all pole spectral estimator, the estimated DF spectrum would be greatly

improved. A relatively simple approach is based on the observation that the
autocorrelation sequence of the sensor data z,, described by equation (6.1), is given by

redm) = E{zm 2'}. | (6.7)

Expanding in terms of s, and =y,

rn(m) = E{(smm + 'nmm)(sn + nn)*} (68)

Since s, and n,, are uncorrelated then,

7oo(m) = E{Snem Su} + E{Npm 1} (6.9)

Based on this last equation, the autocorrelation matrix can be expressed as,
R=R,+ R, (6.10)
where R, is the signal autocorrelation matrix and R, is the noise autocorrelation matrix.

In the special case where n, represents an additive white noise process with a variance 72,
then the autocorrelation sequence can be expressed as,

rzz(o) = E{sn 3:} + 172: (6'11)

which represents the signal power plus the noise power, and

T2(m) = B{Snm 83} for m#0. (6.12)
The matrix equation (6.10) becomes,
R=R,+ 71, (6.13)
where I is the identity matrix.

From these results, the effects of the noise can be removed and the DF spectrum
estimate enhanced by subtracting the value of 72 from either r,,(0) in the
autocorrelation sequence, or from each element in the principle diagonal of the
autocorrelation matrix. The difficulty with this method is in determining the value of the

noise power, 2. Additionally, in practice due to limited data, only an estimate of the
autocorrelation matrix is available in which case equations (6.11) to (6.13) will only
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approximately be true. In this case noise will affect not only r,,(0), but all other estimated
autocorrelation lags as well.

6.1 EIGENANALYSIS

Further insight into the noise problem can be gained by examining the structure of
the autocorrelation matrix in more detail. For the case of M signals, the signal
autocorrelation matrix can be expressed as,

M
R, = Zp,,,s,,,,,',’,, (6.14)

m=0

where p,, represents the signal power of the mtt incident signal, and the normalized signal
vectors each have the form given by

+j0d +jw, 2d +jw_(N-1)d T
e]m e]m e]m( ].

s,,,=ﬁlv[1, , s ey

The parameter w, is the spatial frequency corresponding to the bearing of the mth signal.
Since each matrix formed from the product of the individual signal vectors, s,s,%, has
rank 1, the signal correlation matrix, which is the sum of these matrices, will have rank
equal to the number of signals, M, or have the full rank p+1 if M > p. Since the signal
bearings can onfy be uniquely solved if M < p (i.e. at least M equations formed from the
rows or columns of R are are required to uniquely solve for the M unknown bearings), then
only this case is considered here.

(6.15)

One method of examining the noise effects is based on decomposing the signal
autocorrelation matrix into its component eigenvalues and eigenvectors. The eigenvalues,
A, and corresponding eigenvectors, v,, of a square matrix, M, have the property that,

MVg = /\;'Vi, (616)

where the quantity v,”v.- = 1. If the matrix is Hermitian (i.e. M= M), then the
eigenvalues will be real, and if in addition, the eigenvalues are all distinct, the eigenvectors
will form an orthonormal set. The methods used to compute the eigenvalues and
eigenvectors are not discussed in this report but can be found in reference [6-1].

In the case of the signal autocorrelation matrix the eigenvector expression
becomes,

R,v, = \v.. (6.17)

The eigenvectors form an orthonormal basis set for the signal —ectors, so that the matrix
R, can be decomposed in terms of all its eigenvalues and eigenvectors as,

R, = iAmvmv:, (6.18)

m=0

in which the eigenvalues have been ordered in decreasing value (Ao 2 A;2 ... 2 Ap), and the
eigenvectors associated with the non-zero eigenvalues are orthonormal (i.e., vbv, = 1 if

56




;= j, and vMv, =0 if i# j). The remaining eigenvectors (if more than one), which are
associated with the zero eigenvalues can arbitrarily chosen to satisfy equation (6.16) as
long as the vector chosen is orthogonal to all the eigenvectors associated with the non—zero
eigenvalues (but not necessarily those associated with the zero eigenvectors). For
simplicity, however, these eigenvectors are assumed (throughout the rest of this report) to
be chosen to satisfy the same orthonormal condition as the eigenvectors associated with the
non-zero eigenvectors.

Since the eigenvectors associated with non-zero eigenvalues span the same
subspace as the signal vectors, there will only be M non-zero eigenvalues, that is,

Aun = A2 = ... = A, = 0. Equation (6.18) can be rewritten as,
N-1 )
R, = z/\mvmvm, (6.19)
m=0

The first M eigenvectors are known as the principal eigenvectors.

Similarly the decomposition of the autocorrelation matrix for the case of signals in
white noise can be represented by

R= iw,,.u,,,u,',',, (6.20)
m=0

where the eigenvalues 9, and eigenvectors u, satisfy the relationship
Rm = ‘wgu.‘. (621)

Breaking the autocorrelation matrix down into the signal and noise autocorrelation
matrices (from equation (6.13)) then,

(Rs + n)u; = Y, (6.22)

From this expression it is apparent that the autocorrelation matrix will be full rank (i.e.
p+1 non—zero eigenvectors) since the noise autocorrelation matrix, 77, has full rank.

The relationship between the eigenvalues and eigenvectors for the autocorrelation
matrix, and those of the signal autocorrelation matrix can be highlighted by rearranging
equation (6.22) as,

R = (% - 1)u. (6.23)

This is, in fact, another form of the eigenvector expression for the signal autocorrelation
matrix given by equation (6.17). Therefore,

o =V, (6.24)
and

'ﬁb: = /\; + 7]2- (625)
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Using these results, equation (6.20) can be expressed in terms of the signal
autocorrelation eigenvalues and eigenvectors as,

R= i¢mvmv,':, (6.26)
m=0
which can be rewritten as,
M- 1 " "
R= Z(/\m + 72) V¥ + in‘*‘v,,.v,,.. (6.27)
m=0 m=M

This represents the decomposition of the autocorrelation matrix into its associated
eigenvalues and eigenvectors. The first summation term of equation (6.27) contains the
eigenvectors that span the signal subspace (i.e. each of these vectors is a linear combination
of the signal vectors), and in this context the first M eigenvectors are said to form the
signal subspace. The remaining p-M+1 eigenvectors are orthogonal to the signal subspace
vectors and are said to form the noise subspace.

In practice, since only an est’mate of the autocorrelation matrix is available, the
above analysis is only approximately true. In this case, and given no knowledge about the
noise, the left summation term of equation (6.27) represents the optimum reduced rank
approximation in the least squares sense of the signal autocorrelation matrix [6-2] (see also
Appendix B). If the noise is known to be white Gaussian in nature, an even better estimate
of the signal correlation matrix can be obtained by subtracting an estimate of the 72 noise
contribution from the largest M eigenvalues where the estimate of 72 is obtained by the
averaging the p-M+1 smallest eigenvalues. Since removal of the 72 only affects the shape of
the estimated spectrum, not the location of the peaks, this additional step is not normally
performed in practice.

6.2 SINGULAR VALUE DECOMPOSITION

Division of the autocorrelation matrix into signal and noise suvspaces can be
accomplished using eigenanalysis techniques as discussed in the last section. A similar
division may also be made in the data matrix using singular value decomposition (SVD)
techniques. According to tke SVD theorem [6-3], an arbitrary mxn complex valued matrix
A of rank K can be decomposed in terms of the orthonormal left singular vectors,
ug, Wy, Wy, ..., Ug.y, the orthonormal right singular vectors, wo, vy, Vo, ..., ¥k, and the
positive real singular values, o, 0y, 09, ..., Ok.1, a8,

K-
H

A= oWV, (6.28)

1
=0

where u; and v, are m and n element vectors respectively, and the singular values are
arranged in decreasing order (i.e. g9 > d12 ... > gx1 > 0). The relationship between the
singular vectors and the matrix A can also be expressed as,

Av, = o,u; and AHu, = gV, (6.29)

The relationship between SVD and eigenanalysis can be <hown through the
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following derivation:

AV,' =0o;uy
(AV,‘ ) HAV,‘ = (U,‘llg)HO'ill@

H, H 2 R
V,-A AV,' =0 uug
v'.-'AHAv.- =0, 2v?v,- (since u?ui = v?v.- =1)

AHAV,' =0y 2V,’ . (630)

Similarly,
H 2
AA o = 0; U (631)

From the above two relationships, it is apparent that the vectors v; are eigenvectors of
the matrix AHA and the vectors u; are eigenvectors of the matrix AAH. The singular
values o; are the positive square root of the corresponding non-zero eigenvalues of either
matrix.

If SVD is performed on the signal data matrix then the singular value
decomposition of this matrix has the form,

M-1
X;= > OnllnVm. (6.32)
m=0

For the case of signals in white noise, a similar decomposition of the data matrix can be
performed which results in,

X = i&,,.w,,,z:.. (6.33)
m=0

where &, represents the singular values, and w,, and z, represent the right and left
singular vectors respectively. However, since v, is an eigenvector of the signal
autocorrelation matrix and z, is an eigenvector of the autocorrelation matrix, then from
the previous discussion on eigenanalysis in Section 6.1 (equation (6.24)), vy, = 2Zn.
Similarly it can be shown that u, = w, Therefore

X = ﬁ&mumv:. (6.34)
m=0

Noting that o, and d, are the positive square roots of the eigenvalues of the
signal autocorrelation matrix and autocorrelation matrix respectively (see equation (B.20)
in Appendix B), then from equation (6.25)

6,3. = 03, + 7)2, (6.35)

where 72 is the noise power. Hence equation (6.34) becomes,
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M- 1
X= z\/aﬂP + 7? UnVi + inumv:. (6.36)
m=0 m=M

In this form it is apparent that the singular vectors associated with the M largest singular
values of X (i.e. the vectors used in the left summation term) are a basis for the signal
subspace, and by default, th: singular vectors associated with the p-M+1 smallest
siri)gula.r values of X (i.e. tke vectors used in the right summation term) form the noise
subspace.

In practice, since only a limited amount of data will be available, X"X will only
be an estimate of the true autocorrelation matrix. As a result, the previous analysis will
only be approximately true.

6.3 QR FACTORIZATION
Given _matrix A there is a factorization such that
A = QU, (6.37)

where Q is an unitary matrix (i.e. Q"Q =1I)and U is an upper triangular matrix.
Eigenanalysis and singular value decomposition methods are often performed based on
iterative QR approaches to solve for the eigenvalues and eigenvectors of a matrix.

An interesting alternative to the iterative approach is to perform an approximate
decomposition based on only a single QR decomposition [6-4]. For example, performing QR
factorization on the signal autocorrelation matrix results in,

R, = QU, (641)
which can be expanded as

8 = ‘u,ooqo (642)
81 = ug1qo + u1qs

Sp = Uopdo + Updi + ...+ UppQp,

where s, and q; represent the columns of R,and Q respectively, and u; represents the

elements of U . If the signal matrix has rank M, then only the first M columns of R,

will be linearly independent. That is, the vectors 8y, 8.1, 8y2, ..., 8, Will be a linear

combinatior of the first M columns of R, (8, 8y, 82, ..., 8ax1). Since the vectors

Q, 91, 92, ---, 9p are orthogonal (by definition), then the columns 8y, Su1, 8xi2, .., 8, Will be .
will also be a linear combination of the vectors qo, qi, Q2, ..., Qa1 only, and therefore the

values of u,=0 for 1> M. From this it is apparent that the first M columns of the

matrix Q form an orthonormal basis set for the signal autocorrelation matrix. .

Similarly the QR factorization of the autocorrelation matrix results in,

R =PV, (6.43)
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where R is the autocorrelation matrix, P is an unitary matrix and V is an upper
triangular matrix. Again, this can be expanded as,

o = %ooPo (6.44)

I = Yo1Po + VPt

I, = UpPo + Pl + ... + UpPp,
where r; represents the columns of the autocorrelation matrix R. In the case of white

noise the relationship given in equation (6.13) may be used. Applying this to the set of
equations (6.44) then,

so+ 791, 0,0, ..., 0] = voopo (6.45)
T
51 + 7’2[0) 1) 0) sy 0] = Y01Po + "1p1

L
8, + 790, 0, 0, ..., 1] = vo;po + VipP1 + ... + UpPp
and finally expanding s; in terms of the relationship given in equation (6.45) then

T

772[1) O) 0’ sy O] + ugoqo = YooPo (646)
T

740, 1,0, ..., 0] + uoiqo + vuqy = ¥oPo + YuPi

] :
740, 0,0, ..., 1] + uopqo + wipls + ... + UppQp = YopgPo + VipPr + ... + Vp Py

By inspection the first M basis vectors of the autocorrelation matrix will not equal the
first M basis vectors of the signal correlation matrix, a necessary condition if these
vectors are to be used to create a signal and noise subspace. However, this problem can be
overcome if the contribution of noise, 7?2, is first subtracted from the main diagonal of the
autocorrelation matrix before performing the QR factorization. In this case the vectors q;
and p,; will be equal.

An estimate of the noise can be made based on the empirically obtained result that
| o] ~ L';fl 72 for M<i<p. (6.47)

Rearranging in terms of o2 and averaging over the indicated range of the index i, then

7= Gy 2 (648)

t =M

Since these results are based on the asymptotic case where p~oo, the noise variance
estimate will be less accurate as p decreases.
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The ordering of the columns of R is also important. The optimum ordering is not
necessarily the natural ordering resulting from the operation XWX, but rather the ordering
where the first M columns are selected to be those which are closest to being mutually
orthogonal. In the case of closely spaced signals, the ordering of the columns can be
determined in steps. At the first step the first column is chosen. In successive steps, the
column which maximizes the minimum distance (in terms of the column indices) between
it and all the other previously selected columns is chosen. The ordering of the remaining
columns is not important. For example in the case of M=2, the optimum ordering is
achieved by selecting the first column, then selecting the last column since it is farthest
from the first column. In the case of M=3, the first two columns are selected the same way
as for M=2, and the third column will be selected from a center column (e.g. for p=6 the
ordering would be 0,6,2 and for p=7 the ordering would be 0,7,3 or 0,7,4).

The removal of the noise power from the main diagonal of the autocorrelation
matrix, followed by the reordering of the columns of the matrix, are important additions to
the QR method and result in performance almost equal to that of the more
computationally demanding eigenanalysis or SVD methods.

The noise/signal subspace division is made by considering that the signals can be
completely represented by the M column vectors of the matrix Q and consequently these
vectors form the basis of the signal subspace. The remaining p-M+1 column vectors in Q
form the basis of the noise subspace.

In practice, when only a limited amount of data is available for estimation of the
autocorrelation matrix, the preceding analysis is only approximately true.
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7.0 DEALING WITH THE REDUCED RANK PROBLEM
7.1 THE AUGMENTED AUTOCORRELATION MATRIX

In Section 5 a number of DF estimators were discussed (AR, ME, LP, MV, and
TN) which involve computing the coefficients of an all pole filter. One common approach
to computing the spectrum of each of these estimators involves the inversion of the
augmented normal autocorrelation matrix (R-1). This approach assumes that the
autocorrelation matrix R is full rank and nonsingular. In general practice this will be true
since uncorrelated sensor noise (usually modelled as complex white Gaussian noise) will
ensure that the autocorrelation matrix is full rank and invertible.

7.1.1 The General Solution

In Section 6 methods to estimate the signal autocorrelation matrix R, were
discussed. Using various decomposition methods to analyze the vector space spanned by
the columns (or rows) of the autocorrelation matrix it was shown that it is possible to
divide this vector space into a signal subspace and noise subspace. Using the matrix formed
from the signal subspace as the signal autocorrelation matrix estimate, the idea was to
enhance all pole estimator performance by removing the noise before estimating the filter
coefficients. The first difficulty with this approach, however, is that the signal
autocogrlelation matrix (and its estimate) has rank M, so if M<p, this matrix is not
invertible.

In reality the difficulty arises since p+1 coefficients are being used to determine A
signal bearings. In other words there are more coefficients than necessary (assuming M<p)
and as a result an infinite number of solutions are possible. This difficulty can be overcome
by examining the all pole estimators in more detail. A common feature of all these methods
is the minimization of the filter output variance o2 given by the equation

o2 = atRa, (7.1)

subject to some constraint (dependent on the estimator used) on the choice of the filter
coefficient vector a (the vector from which the DF spectrum is generated).

To incorporate the constraint into the function to be minimized, the Lagrange
multiplier technique <an be used. Based on this technique a new function is defined such
that

F = a'Ra + éc(a), (7.2)

where the function ¢(a) = 0 when the constraint on a is satisfied. Minimizing F with
respect to a! results in an equation of the form,

Ra+ & =0, (7.3)

where the constraint vector c is defined as
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dec(a

cla
(7.4)

| Sg «?t

dc(a
pd

Minimizing F with respect to § results in the original constraint given by,
c(a) = 0. (7.5)

The (solu)tion of the coefficient vector a can then be determined by solving equations (7.3)
and (7.5).

A feature of the derivation of the solution coefficient vector a is that it involves
the term Ra (see equation (7.3)). If R is invertible, a is easily isolated by premultiplying
the term by R-L. In the case where R is not full rank, then determination of a must be
handled differently.

The effect of the constraint on the minimization of equation (7.2) is to reduce the
number of degrees of freedom in the choice of the coefficient vector a by 1. In otherwords, if
Ris a (p+1)x(p+1) autocorrzlation matrix, then the choice of the vector a will have p
degrees of freedom. The optimum choice for the vector a is the one wich results in the
lowest variance; ideally 02 = 0. However, if the autocorrelation matrix is full rank, the loss
of a degree of freedom means that it is impossible to choose a vector a which
simultaneously satisfies the given constraint and sets the output filter variance to zero.
This would require a vector with p+1 degrees of freedom.

In the case where the estimated signal autocorrelation matrix R, is used in place of
R, the situation changes since R, is not full rank (assuming M < p) but has rank M. Since
this reduces the number of degrees of freedom required from p+1 to M, the vector a can be
chosen to satisfy both the constraint and the relationship
atR.a = 0. (7.6)

Expanding R, in terms of the signal data matrix X, equation (7.6) can be rewritten as,

a'X X% = |a“X,|2 = 0. (7.7)

This equation may only be satisfied if

(7.8)

OO 0O

o -
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Premultiplying this result by X, then,

0
0
XX% = Ra = |0 (7.9)
0
Assuming that M < p, then there are an infinite number of solutions to this
equation. The family of all possible solutions may be determined by examining the
eigenstructure of R,. Using the notation developed in Section 5.1, then,
R, = iz\mvmv:, (7.10)
m= 0 -

where A, represents the eigenvalues of R (and R,) ordered so that Ag> A2 ... 2 A,and vy,
represents the corresponding eigenvectors of R (and R,). Additionally R, has rank M <p,
sothat Ay = Ayu= ... = A, = 0.

Since the eigenvectors form an orthonormal basis set (vi#v; = 0 for i # j, and
viy; = 1) and R, is formed from the first M eigenvectors, then the vector a must be
orthogonal to these M eigenvectors to satisfy equation (7.9). Thus the vector a is a linear
combination of the last p-M+1 eigenvectors (Vy, Vi1, Va2, -, Vp). One possible
representation is given by

a=( i&,,.vmv: ), (7.11)
m=M

where the values of §,, are arbitrarily chosen, and the vector q is chosen so that a satisfies
the constraint condition in equation (7.5). From equation (7.11) a new matrix can be
defined as

RI = ﬁ:amvmv:: (712)
m=M

where the symbol T is defined here as the eigeninverse operator which sets all the nonzero
eigenvalues of the matrix R, to 0 and all the zero eigenvalues to some arbitrary value. The
choice of the new eigenvalues will be discussed later on in Sections 7.1.2.1 to 7.1.2.3. Note
that R,T is formed from the eigenvectors of the noise subspace of R. Using this new
representation, equation (7.11) becomes

a = Rlq. (7.13)

The selection of a suitable constraint vector q and subsequent derivation of a may
be simplified considerably by noting that when the autocorrelation matrix has full rank,
equation (7.3) can be rewritten as

a=-Rlk. (7.14)
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By setting q = -dc in equation (7.13) the solution of the coefficient vector a can be
determined by solving,

a= -R.I&C, (715)
subject to the constraint
o(a) = 0. (7.16)

Solving these equations is identical to the solution procedure for the full rank case
(involving equations (7.3) or (7.14), and (7.5)), except that the matrix R, has been
exchanged for R-l. In other words, the noise removal techniques discussed in Section 6 can
be used to enhance any of the all pole DF estimators described previously in Section 5
simply by replacing R-! by the matrix R,I. For example, the enhanced version of the MV
method (see equation (5.64)) is given by

1
S(¢) = TRl (7.17)

7.1.2  The Eigeninverse Solution .

Up to this point no criteria has been given for the selection of the eigenvalues of
the eigeninverse solution R,I. The choice of these eigenvalues has an effect on the size and
location of spurious peaks in the DF spectrum, and in the case where the estimated
autocorrelation matrix is used, it also affects the location of peaks corresponding to actual
signal bearings as well. As a result, the choice of the eigenvalues can have a significant
eftect on the accuracy of the DF estimator.

Three different approaches are examined in the next three sections.
7.1.2.1 The White Noise Approach

If the eigenvalues of the eigeninverse solution R,T are chosen, the resulting DF
spectrum will have M peaks corresponding to the bearings of the M actual signals, and up
to p-M spurious peaks with arbitrary locations. A useful solution is one that uniformly
suppresses these spurious peaks or whitens the spectrum. This reduces the chances of
confusing a spurious peak with an actual signal peak.

Since the eigenvalues of a white noise process are all equal, then the estimated

spectrum can be whitened by setting the nonzero eigenvalues of Rﬁ to 1 [7-1]. Defining this
in this report as the whitened eigeninverse, it is expressed in terms of equation (7.12) as,

Rl = iv,,.v:. (7.18)

mz=M

An equivalent definition using the Moore-Penrose pseudoinverse [7-2] is given by

R! =I-R,RY, (7.19)

where the # is used to represent the pseudoinverse operation. The pseudoinverse of a
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matrix can be defined in terms of its singular value decomposition. Using an arbtrary
matrix Q as an example, then

K
H
Qt=> %ﬂu,,.v,,., (7.20)

where K is the rank of Q (and is less than or equal to the smallest dimension of Q), om
represents the singular values of Q, and u,, and v,, represent the left and right singular
vectors of Q respectively.

Alternatively, under the special condition where the signal data matrix has
dimensions px M, the whitened eigeninverse can also be defined as,

Rl =1-X,(X!X,)!x# (7.21)
7.1.2.2 Approach of Johnson and Degraff

A second approach proposed by Johnson and Degraff [7-3] to the selection of
eigenvalues is based on the solution which results when the autocorrelation matrix is
inverted first, and the signal/noise subspace division performed afterwards. The result of
the matrix inversion is given by,

M-1
H H
R'l = z }—];vam + i r];‘anvm (722)
m=0 m=M

where the first term represents the signal subspace, and the second term represents the
noise subspace. From the analysis given previously, the enhanced form of R-1lies entirely in
the noise subspace, in which case the signal subspace eigenvalues are set to 0. That is

Rl = illv,,.v:,.. (7.23)

m=M
7.1.2.3 Approach of Wax and Kailath

The third approach proposed by Wax and Kailath [7-4] is based on an examination
of the maximum likelihood solution to the bearing estimation problem for a single signal.
The maximum likelihood method seeks to find the signal which best fits the data. For a
single signal, assuming zero mean Gaussian noise, the maximum likelihood solution reduces
to a least squares minimization which is given by the following,

=3 |x(i) - el (7:24)
121

where the minimization of €2 is performed with respect to (i) and ¢, the vector x(3)
represents a single sample of the sensor data measured at the time instance represented by
i, (3) represents the phase and amplitude of the signal measured at sensor 0, and e is the
steering vector (i.e. it determines the signal phase and amplitude at each of the other
sensors as a function of ¢ relative to sensor 0).
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Minimizing equation (7.24) with respect to ¢(7) results in the expression
H o
o(i) = £X(0) (7.25)
efle

Replacing ¢(1) by this expression and noting that ete = N, then the minimization of €2 can
be expressed as a function of ¢ only. That is, equation (7.24) becomes,

et= > |x() - free'x(i)| (7.26)
which can be expanded as,
2= xi)x(i) - (- > x(iee"x(i) (7.27)

Given that the above expression is real valued and greater than or equal to zero,
and since the first term is not a function of ¢, then minimizing this expression is equivalent
to maximizing the second term. Ignoring the constant multiplier term, the maximum
likelihood solution can be found by maximizing,

T
> x(4)ee"x(i). (7.28)
1=1
Additionally since e"x(1) is a scalar value, the above expression can be rewritten as,

zrje"x(i)x"(i)e. (7.29)

The covariance estimate of the autocorrelation matrix for multiple samples is
defined by,

R =1 D x(i)xi). (7.30)

1=

Using this definition for ﬁ, the maximum likelihood solution can be determined by
maximizing the function,

-

e"Re, (7.31)

which is in fact the classical spectral estimator. In terms of the eigenvalues and
eigenvectors of the covariance estimate of R, this equation can be reformulated as,
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N-1
¢ Avovs + > AnVn¥m e (7.32)

m=1

Using the fact that,
N-1 )
> Vv =1, (7.33)
m=0
and expressing vovl in terms of the other eigenvectors, then equation (7.32) becomes,
N-1 )
e Aol - > (Ao~ An)¥n¥n Je. (7.34)
m=1

Since the term,

e" Agle = Age'e = 2 g, (7.35)

is constant with respect to ¢, its effect can be ignored. This gives,

e sz(xo v e. (7.36)
mz1|

Finally maximizing this last expression is equivalent to minimizing the negative reciprocal
given by,
1
7 — (7.37)
¢( > (Ao - An)Vn¥m e

mz1

Inspection of equation (7.37) reveals that it is in fact an enhanced form of the MV
method for a single signal, and that the summation term in the brackets is a form of the
matrix R,T. Using this form of R,T, Wax and Kailath proposed an extension to the
multiple signal case (applying the previous analysis to determine an exact solution for the
multiple signal case cannot be done in any simple fashion) which is defined here as,

R! = i(x. - An) V¥ (7.38)
m=M

where X, serves the same function as A in equation (7.38) and is defined as the mean of the
signal eigenvalues given by,

M-
Y=g > A (7.39)

ms

—

(-]
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7.2 THE NORMAL AUTOCORRELATION MATRIX

Throughout most of this report, autoregressive DF estimators based on the
augmented normal equation formulation of the autocorrelation matrix have been discussed.
However, an alternate formulation using only the normal equations was given, and is
repeated here as (see equation (5.11) in Section 5.2.1),

Rw = 1, (7.40)
where R, is a pxp autocorrelation matrix, w is the tap weight coefficient vector (from
\(,vhic)h the DF spectrum is derived), and r was defined previously in equations (5.13) and
2.5).

The signal/noise subspace technique can be used to enhance R, in the same

manner as in the augmented autocorrelation case simply by setting the smallest p-M
eigenvalues of R, to zero. The result is given by

M- 1
R, = ZAmvmv: , (7.41)
m=0

where in this case R, is the signat autocorrelation matrix estimate of R,.

In equation (7.40) the quantity of interest is w, and it is normally calculated as

w = -R;'T. (7.42)

However, if R, is replaced by R, this solution is no longer applicable since R, is not full
rank and therefore not invertible. However, analysis of the equation

R,w = 1, (7.43)
does yield some insight into the solution to the problem. For example w can be represented

as a linear combination of the eigenvectors of the autocorrelation matrix R, One possible
representation is given by,

M- 1 -1
w=( z&mvmv:. + E%Vﬂﬁ:) q, (7.44)
m=0 m=M

where in this case q is a column vector of ones and the values of 4, are chosen so that w is
a solution to equation (7.42). The above representation also clearly distinguishes between
the signal subspace eigenvectors (first summation term), and the noise subspace
eigenvectors (second summation term) of the autc orrelation matrix.

Using this last representation for w, and the representation of R, given by equation
(7.41), equation (7.43) can be expanded as,

M-1 M- 1 -1
R’w = ( z/\mvmv:)( Z&meV: + ib‘mvmv:) q = -1 (745)
m=0 m=0 m=M
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Simplifying, by taking advantage of the fact that the eigenvectors form an orthonormal set,
the result can be expressed as

M-1
Rw = (D Anbn¥n¥n)q = L. (7.46)
m=0

From the form of this equation, it is clear that the choice of values of §,, for M < m < p has
no effect on the solution of equation (7.43). In other words, these values of 6, may be
arbitrarily chosen and equation (7.43) will still be satisfied.

Based on this observation it is possible to derive the general solution to equation
(7.43) for w. The tap weight coefficient vector w can be represented as

W= W+ W, (7.47)

where w, is the part of w which is formed from the signal subspace of R, in equation (7.46)
and is defined (based on equation (7.44)) as,

w, = "'Zla,.vmv:) e (7.48)

m=0

and w, is the part of w which is formed from the noise subspace of R, and is defined as,

-1
w, = ( icﬁmvmv:) q. (7.49)
m=M

As stated before the choice of 4, for w, is arbitrary so that equation (7.49) represents the
general solution for w, and need not be simplified any further. The choice of é,, for w,, on
the other hand, is critical and must be chosen so that equation (7.43) is satisfied.
To solve for w,, equation (7.43) is rewritten as
Rw = R,w, = 1. (7.50)

Since R, is not invertible, a new matrix, derived from the noise subspace eigenvectors (but
not eigenvalues) of R, is chosen to act as a "catalyst" in the solution. Namely,

-1
R, = Ev,,,v:. (7.51)

This matrix is formed from the noise subspace of R and has the properties that,
R,w,=0, (752)
and

Rxr=20 (753)
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(this second property is a result of the fact that based on equation (7.46) r is a linear
combination of the signal subspace eigenvectors which are orthogonal to the eigenvectors of
R.). Using the first property (equation (7.52)), equation (7.50) can be rewritten as

(Rs + Ry)w, = 1. (7.54)

The matrix (R, + R,) is invertible, so the solution for w, is given by,

w, = (R, + R,)'r. (7.55)
Again using the eigenvector representation, equation (7.55) can be expanded as
1w 2w
w, = o Z Y- Vm¥m + ivmvm )r. (7.56)
m=0 m m=M

Recognizing the second summation term as R,, and taking advantage of the relationship
expressed in equation (7.53), then the solution for w, simplifies,

N
w, = o Zl—l-vmv:) r. (7.57)
m=0 m

Therefore, the general solution for w in terms of the eigenvalues and eigenvectors
of the autocorrelation matrix is given by,

M p-1
w = z Tlvmv:.)r + ( Z&mvmv,':,) qQ. (7.58)
™ m=M

m=0
An infinite number of solutions exist for w since the values of §,, can be arbitrarily chosen.
7.2.1 The Pseudoinverse Solution

In the preceding discussion regarding the general solution of the tap weight
coefficient vector w, an infinite number of solutions were shown to exist. When the true
autocorrelation matrix R, is used, each solution will result in a DF spectrum with M peaks
corresponding to the bearing of the M actual signals, and up to p-M spurious peaks with
arbitrary location. The most useful solution is the one that suppresses these peaks.

In the general solution of w expressed by equation (7.582, the first summation term
represents the contribution of the signal subspace eigenvectors of the autocorrelation
matrix R, and remains invariant for all possible solutions of w. The second term represents
the varia.gle part of w. From this it can be concluded that the sive and location of the
signal peaks in the DF spectrum are controlled by the first term, and the spurious peaks
are controlled by the second term. Consequently the size of the spurious peaks in the
spectrum can be minimized by minimizing the second summation term. Since this
corresponds to setting 8, = 0, the desired form of w is given by [7-5],

M
w= z )‘lvmv: )T (7.59)

m=0
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The expression inside the brackets is the pseudoinverse (previously defined by equation
(7.20)) of R, and consequently equation (7.58) can also be written as,

w=-Rir, (7.60)
where the symbol # indicates the pseudoinverse operation.

This solution for w is also called the minimum norm solution since this solution of
w has the minimum norm of all possible solutions where the norm of w is given by

[w| = . (7.61)

This can be shown by expanding w using the relationship expressed in equation (7.58), and
squaring to get,

M M p-t
le 2 = [IH Z )‘lvmv: + q“ S&meVm] [( Z X];'vmv::l )I' + ( Zémvmv: )q ] (762)
m=0 m=M " m=M

m=

By taking advantage of the fact that the eigenvectors form an orthonormal set, this
expression simplifies to

M p-1
|w|?=r"r z Xl;;g + qlq Z5m2- (7.63)
m=0 m=M

By inspection it is clear that |w|? and correspondingly the norm |w| are minimized when
6m = 0. Therefore equation (7.59) represents the minimum norm soiution of w.
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8.0 ENHANCED ALL POLE ESTIMATORS

In the previous two sections the techniques to remove a significant portion of the
noise from the data or autocorrelation matrix (Section 6) and generate a suitable
replacement for the inverse autocorrelation matrix were discussed (Section 7). Of particular
interest is the improvement that results in all pole DF estimators when these techniques
are used. Enhancing these estimators in this manner is equivalent to using an ARMA
model without the need to explicitly compute the MA filter coefficients (since these
coefficients ideally only model the noise and are therefore not required to generate the DF
spectrum). As was discussed in Section 4, the ARMA filter provides the best model of the
sensor information in a signal plus noise environmert.

: MA estimators can also be improved using the enhancements discussed in Section
6. However, since for small tactical sensor arrays MA estimators are generally resolution
limited by the number and spacing of sensors, and not the noise, these enhancements are
not discussed here.

Enhancements to ARMA estimators have been proposed [5-1], but since these
methods generally involve a computationally extensive nonlinear search procedure, they are
not discussed in this report.

From the discussion in Section 7 it was shown that an infinite number of solutions
exist as possible replacements for the inverse autocorrelation matrix which is a central
ieature of the all pole estimators discussed in Section 5. In particular the eigeninverse, the
weighted eigeninverse, and pseudoinverse solutions have all been proposed as useful
solutions. The result is numerous possible enhanced estimators. To limit discussion on
these enhanced estimators, only those which have appeared in the open literature are
discuésed. These modified estimators are also divided into two categories: linear prediction,
and Capon.

8.1 ENHANCED LINEAR PREDICTION ESTIMATORS

The linear prediction estimators discussed in Section 5 are considered to include
the Autoregressive, Maximum Entropy and all linear prediction methods. In the following
two sections two enhanced linear prediction estimators are described. The first is based on
using the augmented normal equation formulation, and the second is based on using just
the normal equation formulation.

8.1.1 Minimum Norm Method

In the Minimum Norm (MNorm) method [8-1] the linear prediction equation given

by,
1
Sil(¢) = ————, (8.1)
¢'Ruu"Rle
is modified to become
1
SMNorm(¢) =" (82)
e'RluuRle
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where the inverse autocorrelation matrix is replaced by the whitened eigeninverse matrix
(equation (7.18)). In terms of the eigenvalues and eigenvectors of the autocorrelation
matrix, the above expression can be rewritten as,

SMNorm( ¢) = (83)

1
e'( i Vu¥m') unt i VaVm )e
m=M m=M

The name Minimum Norm comes from the fact that the filter coefficient v=ctor
given by,

a = o’Rlu, (8.4)

has the minimum norm property. That is, although there are an infinite number of
solutions for the vector a which satisfy the equation

R.a = o2, (8.5)

(where R, is the estimated signal autocorrelation matrix defined in Section 6), the solution
selected is the one which minimizes the vector norm |aba| subject to the constraint g = 1.

8.1.2 Modified Forward-Backward Linear Prediction
Like the Minimum Norm method the Modified Forward-Backward Linear
Prediction (MFBLP) method [8-2] is based on enhancing the forward backward linear
prediction method [5-5]. In the MFBLP method, the normal equations defined by
Rw = I, (8.6)

are used, not the augmented normal equations. The enhanced solution for w is given by,
w = -Rir, (8.7)

where in this case R is the pseudoinverse (see equation (7.20)) of the signal autocorrelation
matrix derived from R,.

Once the vector w has been estimated, the vector a is determined using
a= 1], (8.8)
w
and the DF spectrum is computed as,
1
efaafe
Another similarity to the Minimum Norm method is that the solution of the vector

a determined by the MFBLP method has the minimum norm property. That is, although
there are an infinite number of solutions for the vector w which satisfy the equation

Surs($) = (8.9)
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Rw =1, (8.10)

the solution selected is the one which minimizes the vector norm | whw|. If the vector w is
a minimum norm solution, then so will the vector a. From this it would seem that the
Minimum Norm method and the MFBLP method are identical. However, the difference
between the two methods lies in the signal/noise subspace division. For the MFBLP
method this division is performed on the normal autocorrelation matrix R, and for the
Minimum Norm method this division is performed on the larger augmented autocorrelation
matrix R.

8.2 ENHANCED CAPON ESTIMATORS

The major difference between the Linear Prediction estimators and the Capon
estimators (which include the Minimum Variance and Thermal Noise methods) is the
manner in which the all pole filter coefficients are determined from the inverse
autocorrelation matrix. Linear Prediction estimators select a single column from this
matrix while Capon estimators use a linear combination of these columns.

Two enhanced Capon estimators are described in the following sections.
8.2.1 MUSIC Method

The Multiple Signal Classification (MUSIC) method [7-1] can be described as an
enhanced version of either the Minimum Variance or the Thermal Noise methods. In either
case the inverse autocorrelation matrix is replaced by the whitened eigeninverse matrix
(equation (7.18)). The equivalence of the two enhancements (enhanced Minimum Variance

and enhanced Thermal Noise) is a result of the fact that the eigenvalues of the replacement
matrix are set to unity so that

R! = (R])2 (8.11)

The resultant DF estimator has the form,

e'Rle
In terms of the eigenvalucs and eigenvectors of the autocorrelation matrix, the above
expression can be rewritten as,
Suusic(¢) = 1 : (8.13)
H H
e i VoV )€
m=M
8.2.2  Eigenvector Method
The Eigenvector (EV) method [7-3] can also be represented by the MUSIC
estimator equation (8.12), that is,
Se(9) = ——. (8.14)
e"Rle
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The difference between the two methods is in the definition of RI. In the EV method R! is
the eigeninverse matrix based on the approach by Johnson and DeGraff (equation (7.23)).
Using this definition, equation (8.11) is no longer true, so that the EV method can be
viewed as an enhancement of the Minimum Variance estimator, but not the Thermal Noise
estimator.

In terms of the eigenvalues and eigenvectors of the autocorrelation matrix, the
Minimum Variance DF spectrum can also be defined as,

Sev( ) = L (8.15)

eH( i 1 v,,.v,,.")e
m

m=M
8.3 A COMPARISON OF ENHANCED DF ESTIMATORS

In this section, two basic enhanced estimators plus variants are compared. The
enhanced estimators can be summarized as:

1. Enhanced Autoregressive:

Enhanced Maximum Entropy: See(@P) = S — (8.16)
e"RIuu"Rle
Enhanced Linear Prediction:
2. Enhanced Minimum Variance: Senv(9) = 1 (8.17)
e'Rle

Note that the first category includes the Minimum Norm and Modified Forward Backward
Linear Prediction methods discussed in Sections 8.1.1 and 8.1.2 respectively, and the
second category includes the MUSIC and the Eigenvector methods discussed in Sections
8.2.1 and 8.2.2 respectively.

Variants include the different approaches to determining the eigeninverse, namely,
the whitened eigeninverse, the Johnson and Degraff approach, and the Wax and Kailath
approach, as well as the approximate whitened eigeninverse solution based on QR
Factorization. For comparison purposes, the whitened eigeninverse based estimators,
namely the Minimum Norm method and the MUSIC method, are adopted here as the basic
enhanced estimators.

The simulations that follow are also based on the identical data used previously for
comparing DF estimators in Section 5.4. The optimum model order p for spatial smoothing
purposes was based on a comparison of enhanced estimator accuracy versus the model
order, the results of which are shown in Figure 8.1. The variance of the bearing errors for
2ach value of p was computed from 300 trials at a fixed signal to noise ratio of 50 dB. With
the exception of the variants using the approach of Johnson and Degraff, the model order
chosen was p = 5. For those variants using the approach of Johnson and Degraff, the
chosen model order was p = 4.
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FIGURE 8.1:  Bearing error variance as a function of the model order p

Figure 8.2 compares the performance of the Linear Prediction method versus the
Minimum Norm and Modified Forward-Backward Linear Prediction methods, while Figure
8.3 compares the performance of the Minimum Variance method with the MUSIC method.
Threshold performance for all these methods is dominated by the problem of the peaks in
the estimated DF spectrum corresponding to the 40 and 50 degree bearing signals beginning
to merge into a single peak. In both cases the enhanced methods outperformed the
unenhanced methods in terms of accuracy and threshold performance. Interestingly, in
comparing these results to Figure 5.4, the Adaptive Angular Response method still has the
best threshold performance (but not accuracy) of any of the methods described so far.

Figure 8.4 compares directly the performance of the Minimum Norm method, and
the MUSIC method. For these simulations, the performance of the Minimum Norm method
(and the MFBLP method based on Figure 8.2) was slightly better than MUSIC in terms of
threshold performance. Above threshold there was no significant difference in the accuracy
of any of these methods. Other researchers have also verified these results for two signal
environments [8-3].

In comparing variants of MUSIC and the Minimum Norm methods, involving
either the Johnson and Degraff approach, or the Wax and Kailath approach to the
eigeninverse, no significant differences were found using the approach of Wax and Kailath
and the whitened eigeninverse as shown in Figures 8.5(a) and (b). The approach of Johnson
and Degraff was found to have poorer accuracy mainly due to the restriction to lower
model orders (at higher model orders accuracy was significantly worse as indicated in
Figure 8.1). The restriction to lower model orders, compared to the other approaches, also
limits the maximum number of signal bearings that can be determined.

Using the QR factorization to compute an approximate whitened eigeninverse,
there was no degradation in performance for the Minimum Norm method (shown in Figure
8.6 (a)), and only a slight degradation in threshold performance for the MUSIC metho
(shown in Figure 8.6 (b)).
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9.0 BEARING ESTIMATION USING THE ROOT METHOD

A problem with the method of searching the DF spectrum for signal peaks as
outlined in Section 4.4 (called the spectral search method here) is that the steering vector e
constrains the solutions to the form of a complex sinusoid. In the derivation of the DF
estimators discussed in Section 5, no such constraint is placed on the computation of the
coefficient vector a, the vector from which the DF spectrum is generated (see equation
(4.29)). As a result, the solutions determined using the spectral method are not properly
matched to the vector a. Figure 9.1 illustrates an example of this where a single peak
indicates only one signal although two signals are present. A closer inspection of this peak,
does reveal a "kink" which indicates the presence of the second signal but not an accurate
estimate of its bearing.

I N ‘i
E’; 8! //: \ :
] [ / A
& L / \ ]
g 6 \ T
(g' | // \\ !
5 41L// : "\ i
& ,‘ Pl
i \ N T
0 LN N
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Direction (degrees)

FIGURE 9.1: Minimum Variance bearing estimation using the DF spectrum
(solid line) and the root method (dashed lines). The actual
signals were at 40 and 60 degrees.

A better approach is to use a more general steering vector defined as,

1
s
1 s?
s = T5F1 , (9.1)
sp
where
s=ce’” (9.2)

in place of the steering vector e, in equation (4.29) (see also equation (2.18)), that is,
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1 .
s"aa'ls

The difficulty here is that the search problem has been changed from a one dimensional
problem in wy, to a two dimensional problem involving w; and ¢. This problem can be
simplified by noting that maximizing equation (9.3) is equivalent to minimizing the term

s'a = ia,. 5. (9-4)
nz0

Since this is a polynomial equation, an equivalent mathematical representation is given by,

S(¢) = (9-3)

s'a = a ]1;1[(1 - pas™), (9.5)

where p, represents the roots of this equation, but will be referred to as poles since p, also
represents half the poles of equation (9.3). (The other half of the poles of equation (9.3) are
related by the expression,

*
Pup=-Pn for 1<n<p. (9.6)

For the purposes of bearing estimation, however, determination of the poles given by
equation (9.6) is unnecessary.)

Various rooting algorithms exist, although not discussed here, which are capable
of determining the poles p, for 1 < n < p given the coefficient vector a. Once the poles have
been determined, the corresponding bearings, based on equations (1.2) and (9.2), and also
assuming the elevation angle ¥ = 0, are given by

oo o R o

In the previous example shown in Figure 9.1, the location of the two signals using
the rooting method is shown. The improvement over the spectral method is obvious in this
case. The improvement is also illustrated in the following simulation examples. The
generation of the data is described in Section 5.4 and is also the same data as used in the
examples in Section 8.3.

Figure 9.2 illustrates the improvement of the root-MUSIC and root-Minimum
Norm methods compared to the spectral search version of the Minimum Norm method.
The main improvement, which is true for any of the all pole methods, is betier performance
at lower signal to noise ratios (i.e. a lower threshold). Interestingly the improvement to the
MUSIC method using the rooting method is greater than the improvement to the
Minimum Norm method so that root-Music outperforms root-Minimum Norm. These
results are consistent with observations made by other researchers for the two signal case
(9-1]. Note that the error variance above the threshold is largely unaffected.
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Using variant approaches to calculate the eigeninverse, the qualitative differences
were the same as the spectral search case. That is, there was no difference between root
methods using the whitened eigeninverse or the approach of the Wax and Kailath, whereas
the approach of Johnson and DeGraff resulted in poorer performance. Figures 9-3 (a) and
(b) summarize these results.
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10.0 DETERMINATION OF MODEL PARAMETERS

In all of the DF algorithms discussed so far, it has been assumed that the model
order parameters such as the number of filter coefiicients, p and g, and the number of
signals, M, was already known. Generally this is not true, so that methods to estimate
these parameters, which are discussed in the following sections, are required. However,
before discussing these estimation methods, it is also useful to explore the fundamental
limits on the maximum number of signals that a DF array can be used to exactly
determine the bearing of.

10.1 FUNDAMENTAL LIMITS ON THE MAXIMUM NUMBER OF SIGNALS

Previously the signal environment, in terms of the nth sensor input, was defined
as,

M
it 00m
= > calt)e . (10.1)

m=1{

In this analysis the effects of noise are ignored since the object is to determine the absolute
maximum number of signal bearings which can be estimated as a function of the number of
Sensors.

At any instance in time, each signal can be completely described by three real
valued parameters, namely, amplitude (represented by | c,,,&t) |§,, phase (a function of both
¢n(t) and 0,,) and direction (or correspondingly the spatial frequency wy). Since these
parameters may be arbitrarily chosen within a defined range, they are completely
independent. In other words, if the signal environment is to be modelled, the signal model
will require a minimum of 3M real valued parameters to completely describe the
environment for a single measurement sample. For multiple samples the number of
additional model parameters required is dependent on the type of signals (uncorrelated or
correlated).

To begin with, the case involving signals which are all uncorrelated in time is
examined. In this case, the values of 4, and wy, remain the same from sample to sample
since they are geometry dependent) but the values of the modulating envelope c,(¢)
which is complex valued) will have changed. Assuming enough time has elapsed between
samples so that consecutive values of cm(t% are independent, then each successive sample
will increase the number of signal model parameters required by 2M. If T samples are made
then the total is given by,

N,=3M+ 2M(T-1). (10.2)

In terms of the input data from which the model parameters are estimated, each
sensor input z, can be represented as a single complex value or by two real values, e.g.
values representing amplitude and phase. For each measured sample, 2N real-valued input
parameters are available for processing. The independence of these parameters, however,
will be a function of the input signals, that is, the number of independent values cannot
exceed the number generated by the signal model. Mathematically this can be stated as,

N;=2NT for N, > 2NT, (10.3)
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otherwise,
Ns= N, for N, < 2NT, (10.4)

where N;is the number of independent real-valued input parameters available for
processing; for brevity, these independent parameters will be referred to simply as the
input parameters.

The condition Ny = N, is necessary for the solution of the signal model
parameters. This condition does nos necessarily guarantee a unique solution since
ambiguities may exist depending on the signal model or array geometry (e.g. with linear
arrays there is a 180 degree ambiguity). If Ny < N,, however, no unique solution exists
unless some form of a priori knowledge is incorporated into the solution (e.g. modulation
type). Based on equations (10.2) and (10.3), this condition is met when,

2NT > 3M + 2M(T- 1), (10.5)

which in terms of M can be rewritten as,

M 200 (10.6)
For T> %, this simplifies to,
M<N-1. (10.7)

The case involving signals which are all fully correlated in time can be approached
by treating it as a single composite signal. This is motivated by the fact that not only do
the values of 6, and wy, remain the same from sample to sample (since they are geometry
dependent), but also the ratio of the modulating envelope cn(t)/ci(t). Consequently only
one single complex value (or two real values) is required to describe the change in the
signal model parameters from sample to sample - analogous to a single signal model in the
uncorrelated case.

For a single measurement sample, the composite signal will require 3M
real-valued model parameters. Assuming enough time has elapsed between samples so that
consecutive values of ¢,(t) are uncorrelated, then each successive sample will increase the
number of real-valued signal model parameters required by 2. If T samples are made then
the total is given by,

N,=3M+ 2(T-1). (10.8)

In terms of the input data, the analysis is similar to the uncorrelated case, with
the exception that since the composite signal changes only by a complex multiplier term
from sample to sample, each sensor sample will be related to the previous sample by the
same constant multiplier term. In other words, after the first sample, only 2 input
parameters are added to the input parameter set per sample. Based on this, the number of
input parameters available after T samples is given by,

Ny=2N+2T-1) for M>2 (10.9)
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and
2N

Comparing the first expression, equation {10.9), to equation (10.8) it is evident that for the
stated conditions Ny < N, regardless of the number of samples. In comparing the second
expression, equation (10.10), to equation (10.8), the two expressions are identical, that is,
N; = N,. Clearly then, the upper limit on the number of correlated signals is given by,

M2y (10.11)

Note this is identical to the uncorrelated case where only a single sample is used (T = 1).

Up to this point only the cases of uncorrelated signals only, and correlated signals
only have been considered. The more general case consisting of a mixture of both types of
signals can be solved in a similar manner as before by grouping the signals so that each
group of signals consists of signals (called fundamental signals here) which are correlated
with each other but are uncorrelated with signals from other groups. Each signal group is
then treated as a single composite signal. In the following analysis the total number of
fundamental signals %as before) is represented by M, the total number of composite signals
or correlated groups is represented by K, and the total number of fundamental signals in
each group is M.

Following the previous analysis for uncorrelated signals, the number of signal
model parameters generated is given by,

N,=3M+ 2K(T-1), (10.12)

where the first term and second terms in this expression are equivalent to the first and
second terms respectively in equation (10.2).

The amount of input data available from the sensors will be as given in equations
(10.3) and (10.4). Based on the previous analysis of correlated signals, the condition

M2y, (10.13)

is also imposed since adding more composite signals to the problem will not increase the
upper limit on M;.

The point at which the number of input parameters is sufficient, that is, Ny = N,
occurs when

2NT > 3M + 2K(T-1). (10.14)
This expression can be rewritten in several ways to reveal some of the fundamental limits

involved. For example, in terms of the number of composite signals K, this expression can
be written as
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which for T 1.5M - N + 1 simplifies to,
K<N-1. (10.16)

The maximum limit on M, based on equation (10.14), can be written as,

M UN-KIT + 2K (10.17)

Inspection of this equation suggests no limit on M if the number of samples T is increased
to infinity. However, realizing that

K
M= M, (10.18)
k=1

and letting My = 2N/3 (the upper limit for M;) then an upper limit on M independent of
the number of samples is given by,

¢ 2K (10.19)

Equations (10.13), (10.15), and (10.17) to (10.19) are the general expressions for
the mixed environment which place upper limits on the values of M;, K, and M
respectively. These limits reflect the fundamental limitations placed on the number of
signals that may be estimated for any DF estimator. Whether a particular estimator can
actually achieve these limits is dependent on the modelling approach involved. For
example, in a signal environment where all signals are uncorrelated (K = 1) all the DF
estimators discussed in this report are capable of estimating up to N-1 signal bearings (the
upper limit) given a sufficient number of samples. In the fully correlated environment (K =
M), DF estimators using the covariance method to estimate the autocorrelation matrix do
not achieve the theoretical limit (only one half this value) while estimators using the
modified covariance method do (see Section 3 for a discussion of these methods and their
limitations). None of the estimators discussed in this report achieve the theoretical limits
in the mixed signal environment (1 < K < M), and are at best limited to determining a
maximum of N-1 signal bearings.

10.2 MODEL ORDER DETERMINATION

In the following discussion only the all pole methods discussed in Sections 5 and 8
are considered since MA methods have insufficient resolution for small tactical arrays, and
ARMA methods lead to computational difficulties which are beyond the scope of this
report. This limits the discussion to techniques which are used to determine the number of
all pole filter coefficients, or filter order, p. Two types of signal environments are also
considered: correlated and uncorrelated.

In the case of uncorrelated signals up to N - 1 signals can be processed, assuming a

large number of sensor data samples (i.e. T >> M), without resorting to methods such as
spatial smoothing. Since spatial smoothing results in a decrease in resolution, and tactical
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arrays are generally small in terms of numbers of antenna, the most desirable choice for the
filter order then is p = N - 1. The exception to this is for a small number of sensor data
samples (i.e. T < 10N) where the autocorrelation matrix estimates may be unstable in
which case the optimum filter order will lie somewhere between the maximum value of

N -1 and the optimum filter order for correlated signals discussed in the following
paragraphs.

In the case of correlated signals, the choice of filter order is not nearly so
straightforward. Spatial smoothing, which decreases the filter order, is required if all
correlated sources are to be resolved. Decreasing the filter order also increases the stability
of the autocorrelation matrix estimates since more data is involved in the computation of
each element of the matrix. This can reduce the number of spurious estimates due to noise.
However, decreasing the filter order also decreases the resolution of the estimator.

Figure 10.1 shows the effect of changing the filter order on the accuracy of the
bearing estimates using the Linear Prediction, Minimum Variance, Thermal Noise, and
Adaptive Angular Response methods. The plots represent the results of 100 trials of a 16
element (one third wavelength spacing) DF system used against 5 coherent signals with
bearings of 40, 70, 100, 140, and 160 degrees. Bearing errors at the higher model orders
(7 < p < 14) are a result of the appearance of spurious peaks in the spectrum.
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FIGURE 10.1: Bearing error variance as a function of the model order p for
basic DF estimators

The optimum filter order for the Linear Prediction method has been shown
analytically [10-1) to be about p = N/3 using either the covariance or modified covariance
methods to estimate the autocorrelation matrix. Based on these analytical results and the
simulation results shown in this report (Figures 5.1 and 10.1) a choice for the model order
of N/3 < p < N/2is appropriate. At higher filter orders, the extra coefficients give rise to
spurious estimates in the spectrum which degrade the performance of the estimator. This
choice also limits the number of signals that can be handled to M < N/2.
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Given the similarity between the effect of model order on the accuracy of the
Linear Prediction method and on the Thermal Noise method (see Figure 10.1), the choice
for the model order is the same, namely, N/3 < p < N/2. The Minimum Variance method
has greater immunity to spurious estimates so that slightly higher model orders are
possible except that the accuracy of the method decreases at these higher orders so that a
selection for the model order of N/3 < p < N/2 is again appropriate.

The Adaptive Angular Response method is the most sensitive to model order with
the best choice being p = M or slightly greater. Where the number of signals is unknown,
algorithms, such as the ones discussed in Section 10.3 are required. This significantly
increases the computational work load so that the advantage of using this method
compared to the enhanced methods may be lost.

In the case of enhanced DF methods, taking advantage of the noise/signal
subspace division effectively eliminates the spurious estimate problem. Figure 10.2
illustrates the improvement of the enhanced estimators using the same data as Figure 10.1.
Researchers have determined that for these methods (using the whitened eigeninverse or
the approach of Wax and Kailath) the optimum filter order lies somewhere between 0.6 N
and 0.8 N [7-5],[10-2]. Based on maximizing the number of signal bearings which can be
estimated, the best choice is p = 2N/3. For the methods using the approach of Johnson and
DeGraff (e.g. the Eigenvector method), a lower model order is required due to a decrease in
accuracy at higher model orders (see the example shown in Figure 10.3 at a model order of
p = 10). This decrease in accuracy restricts the approach of Johnson and DeGraff to lower
model orders, i.e. p = N/2.
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FIGURE 10.2: Bearing error variance as a function of the model order p for
enhanced DF estimators

It should be noted that the optimum model orders described above have been
considered for the case where only a single sensor sample is used for bearing estimation,
and/or the signals are fully correlated. For a large number of samples (7 >> N) and
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uncorrelated signals, the optimum choice for the model order is p = N - 1. In land tactical
VHF, correlated signals (multipath) are a fact of life, so that the previous analysis on
model order selection is applicable.
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FIGURE 10.3: Bearing error variance as a function of the model order p for the
root-MUSIC estimators using different eigeninverse approaches

10.3 SIGNAL NUMBER ESTIMATION

Enhanced all pole DF methods such as those discussed in Section 8 require
knowledge of not only the filter order p, but also the number of signals M. Choosing M to
be too small results in poor resolution and choosing M too large results in spurious
estimates.

Kailath and Wax have reformulated the Akaike Information Criterion (AIC) and
the Minimum Description Length (MDL) algorithms which were originally formulated for
estimators using the autocorrelation method of autocorrelation matrix estimation
[10-3],[104]. The reformulated versions use the eigenvalues of the normal (not augmented)
autocorrelation matrix. The details of the derivation of these algorithms are found in
reference [10-5), and the final results are given by,

AIC(m) = N(p-m)In ? 12mel + m (2p - m), (10.20)

f=m+l

and,
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4
1
p-m Z A 1
MDL(m) = N(p-m)In i=mel + 5m (2p-m)In(N). (10.21)
1/(p-m)

|=mll

The best estimate of the number of signals M is the value of the parameter m which
minimizes either one of the above functions.

Studies have shown [10-6] that for a limited number of data samples the AIC
algorithm performs best. However, this algorithm is not consistent, that is, as the number
of samples is increased the probability of error does not decrease to zero. The MDL
algorithm is consistent so that for large numbers of data samples it performs better than
the AIC algorithm.

93




11.0 SUMMARY AND CONCLUSIONS

In this report, a number of the more popular superresolution DF methods were
examined. In particular those methods which were based on adaptive filter models. Three
filter models have evolved, namely, the moving average filter, the autoregressive filter, and
the autoregressive moving average filter. In tersgg of accuracy and computational speed,
methods based on the all pole or autoregressivelh model have shown the greatest
~ promise and for this reason were the main focus of this report.

It was shown that the autoregressive filter based methods can be generalized as a
five step procedure. These steps include:

1. Estimation of the autocorrelation matrix.

2. Division of the autocorrelation .=atrix into a signal ara noise subspace.
3. Generation of an enhanced inverse autocorrelation matrix.

4. Estimation of the all pole filter coefficients.

5. Estimation of the signal bearings from the filter coefficients.

Each of these steps has been the focus of research on ways of optimizing the DF estimation
process.

In terms of the resultant DF accuracy and computational simplicity, the modified
covariance method has been found to be the best choice. Other methods including the
autocorrelation and the covariance methods result in poorer accuracy, and maximum
likelihood based methods, which potentially give higher accuracy, are currently too
computationally intensive for realtime applications.

Enhancements to DF estimators based on the division of the autocorrelation
matrix into a noise and signal subspace has proved to be extremely useful for a number of
reasons. One is the suppression of spurious bearings estimates which can seriously degrade
accuracy. A second reason is the ability to operate using higher order filters which leads to
a slight improvement in accuracy and the ability to determine a greater number of signal
bearings. A third reason is that methods which have been enhanced perform better at lower
signal to noise ratios.

Two methods, eigen decomposition and singular value decomposition, are
typically used to perform the signal/noise subspace division. A new autocorrelation matrix
estimate is then generated using only the signal subspace. From a theoretical point of view,
the results are identical using either decomposition method. An approximate method called
the QR factorization method has also been proposed which achieves nearly the same
performance as -ither eigen decomposition and singular value decomposition, but with
significantly less processing requirements. This suggests that more research is required to
determine how accurately the signal/noise subspace division must be done, and whether
there are even faster methods that could be used.

The difficulty with using the signal subspace estimate for the autocorrelation

estimate is that the resultant matrix is noninvertible. Since the inverse autocorrelation
matrix is a central part of all the autoregressive filter based estimators, generation of an
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enhanced inverse matrix is required. Four approaches have been proposed to do this,
namely the pseudo-inverse, whitened eigeninverse, the approach by Johnson and Degraff,
and the approach by Kailath and Wax. With the exception of the approach by Johnson and
Degraff the differences between the various approaches were insignificant. The approach by
Johnson and Degraff was found to be restricted to smaller model orders than the other
approaches with a resultant degradation in accuracy and reduction in the number of signal
bearings that can be estimated. From the standpoint of simplicity, the whitened
eigeninverse is the preferred approach.

The methods for determining the autoregressive filter coefficients can be divided
into two groups: Capon estimators (Minimum Variance and Thermal Noise) and linear
prediction estimators (Autoregressive, Linear Prediction, and Maximum Entropy).
Without the signal /noise subspace enhancements (steps 2 and 3) the linear prediction
estimators are characterized by higher resolution abilities while the Capon estimators (at
least in the case of the Minimum Variance estimator) are characterized by better
suppression of spurious estimates. A third type of estimator, based on a polezero filter
model, had the best threshold performance in the simulations performed for this report.

Of the enhanced estimators, the enhanced linear prediction estimators (e.g.
Minimum Norm and MFBLP) have better threshold performance and correspondingly
better resolution (when the bearings are determined from the DF spectrum) than the
enhanced modified Capon estimators (i.e. MUSIC).

Two methods are currently in use for estimating the bearings based on the filter
coefficients. The first and more commonly used method is based on a search of the DF
spectrum which is generated based on the transfer function of the filter. This method
suffers from a loss in resolution for two closely spaced signals (in bearing) at lower signal to
noise ratios. A more recently popularized method is based on determining the bearings
directly from the roots of the polynomial equation formed using the filter coefficients. The
result is no merging of signal bearing as in the spectral search case, and a substantial
improvement in performance at low signal to noise ratios. At high signal to noise ratios,
the performance of both methods is identical. Based on this, the root method is clearly
superior. Interestingly the root method brings the greatest improvement to the Capon
estimators, that overall, the root-MUSIC method had the best performance.

Other considerations affecting DF include estimation of the number of signals
and the optimum number of filter coefficients. Estimation of the number of signals is
important for the enhanced methods since underestimating the number of signals leads to a
serious degradation in accuracy and overestimating increases the possibility of spurious
estimates which can also seriously degrade accuracy. Two algorithms, namely, Akaike
Information Criteria (AIC) and Minimum Description Length (MDL), have been proposed.
The AIC algorithm has better performance for a limited number of sensors and sensor data
samples. For a larger number of samples the MDL algorithm performs better.

The choice of model order is important since this affects the accuracy of the
resultant bearing estimates and the number of bearings that can be estimated. Additionally
the basic DF methods are more susceptible to spurious estimates at higher model orders.
For the basic methods, the optimum model order is generally the highest model order for
which spurious estimates do not occur. Since this is a function of the number of signals
which will generally be unknown (the AIC and MDL algorithms require eigendecomposition
of the autocorrelation matrix and are therefore more appropriate for the enhanced
methods) researchers have determined the best choice for the model order is between
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N/3 < p < N/2 when the number of signals is small (i.e. M < p). For methods which are
sensitive to model order, such as the Adaptive Angular Response, this criteria may not be
sufficient to guarantee good results. For the enhanced methods researchers have found a
choice of 0.6 /N < p < 0.8 N to be appropriate.

Based on the results of comparisons between various methods in this report, the
root-MUSIC estimator using the modified covariance autocorrelation matrix estimate
represents the best approach. Approximate decomposition techniques such as QR
factorization show great promise in decreasing the computational requirements of the DF
estimation process without sacrificing accuracy, and this avenue of research should be
explored more fully.

The concept of signal/noise subspace division has proved to be a major step
forward in DF estimation. However the original concept is based on approximations which
are valid for a large number of sensors. More research in the area of limited numbers of
Sensors is necessary.

It should be recognized that the comparisons in this report have focused primarily
on artificial multipath type environments. The purpose of this is due to the fact that for
tactical DF systems, the problems introduced by multipath in the operational environment
are an order of magnitude more serious than any other error mechanism and remain largely
unsolved. The word "artificial" is appropriate since there is very little documented results
available on multipath measurements at VHF and UHF appropriate for DF research so
that in this sense the multipath environments were contrived. It is quite likely that the
numbers of multipath signals in the real environment, even for a single transmitter, will
easily exceed the number of sensors of a tactical array. Under these conditions, the
assumptions made in deriving the various DF methods will be in error and will require
modifications. However, many of the techniques described in this report will still be
applicable.

Two other somewhat artificial assumptions are the assumptions of white Gaussian
noise statistics and perfect calibration of the array sensors. In practical systems these
assumptions are rarely true and the result can be a severe degradation in the performance
of a DF estimator. Although coloured noise can be handled by prewhitening the input
sensor data using a preprocessor, this requires knowledge of the noise statistics beforehand
(i.e. the noise only autocorrelation matrix). Determining unknown noise statistics and
sensor calibration are both active areas of research.

It should also be recognized that the discussion in this report has been limited to
linear arrays which have special mathematical advantages compared to nonuniform or
nonlinear arrays. As a result some of the techniques described in this report are only
applicable to uniform linear arrays. This includes spatial smoothing and rooting techniques.
Additionally the modified covariance method is also restricted to symmetric arrays. A
solution to this problem has been suggested in a paper by Friedlander [11-1] which
describes how an arbitrary array can be interpolated to a linear array before processing.
The result is that the techniques discussed in this report can be extended to arbitrary
arrays, albeit with some extra computational complexity.
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13.0 GLOSSARY

13.1 MATHEMATICAL CONVENTIONS

M a boldface upper case letter represents a matrix

v a boldface lower case letter represents a column vector

serS a lower case or upper case italic letter zepresents a scalar quantity
* complex conjugate

T matrix (or vector) transpose

H complex matrix (or vector) transpose

. estimate

T matrix eigeninverse (defined in section 7.1.2)

# matrix psendoinverse (defined in section 7.1.2.1)

E{} expectation of

real{} real part of
imag{}  imaginary part of

13.2 SYMBOL DEFINITIONS

spacing between sensors

signal wavelength

noise variance

number of time samples

number of signals

number of sensors

spatial frequency (as opposed to the usual definition for temporal
frequency)

bearing angle

bearing angle of signal m

complex baseband output of sensor m at time instance ¢

same as In(t) except the time instance is unspecified

sensor data vector (defined in section 3)

sensor data matrix (defined in section 3)

autocorrelation lag m (defined in section 2.1.1)

augmented autocorrelation matrix (defined in section 5.2.1)
normal autocorrelation matrix (defined in section 5.2.1)
autocorrelation matrix formed from signals only

autocorrelation matrix formed from noise only

element of the autocorrelation matrix occupying the itk row and jth
column

ith singular value of the data matrix ordered so that a; > 0i

ith eigenvalue of the autocorrelation matrix ordered so that A; > A
eigenvector corresponding t~ A, or right singular vector corresponding
to o;

left singular vector corresponding to o;

steering vector (defined by equation 2.18)

autoregressive filter coefficient vector

moving average filter coefficient vector

autoregressive (all pole) filter order - p+1 is also the spatial smoothing
subarray size

qQ >a,
~

pee €zxN
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3

> 3
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q moving average (all zero) filter order
S(¢) direction finding spectrum

13.3 ACRONYMS

AAR adaptive angular response
AIC Akaike information criterion
AR autoregressive

ARMA  autoregressive moving average
BART  Bartlett

DF direction finding

EV eigenvector

MDL minimum description length
MUSIC multiple signal classification
MV minimum variance

TN thermal noise
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APPENDIX A - POLYNOMIAL FACTORIZATION

In classical and superresolution DF estimators functions of the form

G(w) = €"De, (A1)

are often encountered where e is a q+1 element steering vector of the form,

e=[1,¢" "™ ., e'md]'r (A2)

’

and D is a (¢+1) x (¢+1) Hermitian symmetric matrix (such as the autocorrelation matrix
or its inverse). In expanded form, the function G(w) may also be represented as,

Glw) = i g, (A3)

n=-gq

where

= S dun (A4)
i=0

and d,,., is the element located in the itk row and j+nth column of the matrix D. Given the
properties of the matrix D, the coefficients @, will also have the property that,

Gn = Gy (A5)

Since equation (A3) represents a polynomial expression with an odd number of
coefficients, it can be decomposed into the product of simpler polynomial terms given by,

G(w) = r(0) ]1[ (-cae™™ + 1- cae™. (AS)

The polynomial term on the right hand side of this expression can be expressed in terms of
its roots as,

+ jwd

. *]Ud ']W — - ‘j“’d - _jw ~€
-che’ +1-che” = (1-pe’ )(1-pme )———pln T (A7)

From inspection of equation (A7), if p, is a root, then 1/p, must also be a root.
This fact can be used to advantage although two separate cases must be considered. In the
first case, where | p,| # 1, the roots exist in pairs which must satisfy the inverse conjugate
relationship. Under these conditions the coefficients c, are chosen so that

Pin = Dn (AS)
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and
P2 = 1/ps (A9)

Using these new relationships equation (A7) becomes,

i _, » -jud " +jwd
e+ 1- ™™ = (l-p,,ewd)(l-e ) Eat

Pn PaPn + 1

= (1-pue ™)1 -pre’ ™) —1— (A10)

PnPn + 1

In the second case where |p,| = 1, the root pairs do not necessarily exist in pairs
since each root of unit magnitude is its own conjugate inverse, that is,

Pa=—1 (A11)

Pa
However, assuming that the function G(w) has the property that
Gw)2>0 forall w, . (A12)

(such as when G(w) represents the true spectrum or its inverse) and ignoring cases where
different quadratic polynomial terms have the same roots (in that case the ¢, are chosen so
that p;, = p2. so the analysis used when |p,| # 1 still applies) then it also follows that

e+ 1-ce™> 0, (A13)

By inspection (e.g. letting w, = 0),
e (A14)

Equation (A7) is a quadratic polynomial so that the two poles py, and pa, can be
determined from c, using the quadratic equation. This gives,

_l*v 1-4C,.c,‘.. (A15)

Pn= 2¢,

1241 -4c;c;'
Cn

Rearranging this result in terms of ¢, and using the fact that | c,| < 1/2, then

Jdccn =12y 1-4coch. (A17)
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Squaring both sides,

dcaen =142/ 1-4cuch + (1 - 4cacy), (A18)

and simplifying,

1 -4cqcy) = £/ 1-4cuch (A19)
Again squaring both sides
(1 - 4caen)? = 1 - dcqcn, (A20)
and simplifying
dcnca(l - 4eqcy) = 0. (A21)
The solution ¢,c, = 0 is not a valid solution to equation (A15) so
. 1
CnCn = I- - (A22)

Based on this last result, equation (A15)'simpliﬁes to,

1
Dn= ??n (A23)
Since there is only one solution for both p,, and pa,, they both must be equal. That is,

Pin=Dwm=Dn (A24)

These roots also satisfy the relationships expressed in equations (A8) and (A9), and as a
result equation (A10) is still valid for this case.

From the preceding analysis, if the condition G(w) > 0 is met for all w, and using

the result given in equation (A10), then equation (A6) can be factored into two conjugate
parts as,

(1 —pre ""“) (1 - gne"“"‘)
G(w) = 7:(0) ﬁ : ﬁ —. (A25)
nel o papn +1  nel /mn+1

Finally, converting each multiplier term back to polynomial form, the result is

Glw) = i by e 7™ i b, &' 7™ (A26)
n=0

na20
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where the coefficients represented by b, are a result of combining terms with the same
power of e.
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APPENDIX B - OPTIMUM REDUCED RANK MATRICES

The problem to be examined in this discussion is that given an m x n matrix A
of rank K, what is the best reduced rank (less than K) matrix equivalent of A? The
definition of best reduced rank matrix can be given a mathematical formulation by
considering the error matrix,

E=A-B, (B1)
where B is an m x n reduced rank equivalent of matrix A. The best matrix B, in the
least squares sense minimizes the error power given by,

e.-je.-j, (BZ)

where ¢,, represents an element of the matrix E in equation (B1).

One approach to solvmg this problem is to consider an orthonormal vector basis
set, Vg, v, ..., Vx1 (where v; is an n element column vector), used to represent the rows
of the matrix A. For example, if a1 is an 7 element row vecior representing the itk
row of the matrix, then

K-1 "
= Z’y,kvk . (B3)
k=0
Multiplying both sides of this expression by v, then
' H
3 v, = 70, (B4)
H
ay v] Mjs
a2 v] Y25
3m-i VJ Ym-15>

since by definition vy, =1 if i=j and wtv,=0 if i# ]
Based on the set of equations (B4) a second vector set can be defined such that,
AVJ' = 0,4, (B5)

waere u; is an m element normalized column vector, and o; is a positive real scalar.
The matrix A can now be decomposed in terms of the vectors u; and v; as

= oav; . 6
A JJ]H B
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Using this expression, a reduced rank matrix B can be formed simply by setting the
appropriate number of scalar coefficients ¢; to zero. :

To simplify the problem, it is assumed that the values of o; are ordered so that
for a rank reduction of 1, o, =0, for a rank reduction of 2, gy = o402 = 0, etc.
Examining the case where the rank is to be reduced by 1, the reduced rank matrix may be
described by,

K-2
B= ZUJHJ’V]'H. (B7)
j=0

Using equation (B6) for the definition of A, and equation (B7) for the definition
of B, then the error matrix defined by equation (B1) becomes

K-1 K-2
f H
E= ZU,-u,-vj - ZUJ'IIJ‘V]' . (BS)
7=0 j=0 .
and simplifying
. E= O'K.lllx.ﬂlx.ln (Bg)

If v is an element of the vector ux., and #; is an element of the vector v, then the
elements of the matrix E are given by,

€i; = Ok-1UTy

and the error power is given by,

—

n-

m- 1
€2 = z (o k-12:9;)( T k1 %7;). (B10)
iz0 j=

o

This expression can be simplified by first rearranging the coefficients,
Lud . n *
e = o%.lz u.-u.-z ;0. (B11)
i=l j=1
and then recalling that v:.lvx.l = u:.lnx.l = 1, therefore
e = ok, (B12)
Using this last result, the error power will be minimized if a:.l is minimized. In
terms of the choice of the basis vector vy, and utilizing the relationship in equation (B5),

equation (B12) rewritten as,

2

e€=op = (UK-lnh-l)"(a'K-lnb-l) = vesr A"Avy, (B13)
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Inspection of equation (B13) suggests an alternate description of the problem. That is,
choose a direction vk, in the vector space defined by the rows of A (other than the null
vector) for which the sum of the power of the row vector components (7x. in equation
(B4)) in that direction is minimized.

Minimizing ¢? with respect to each of the elements of vk, with the constraint
that vy vy, = 1 is simplified using the Lagrange multiplier technique [5-8]. Defining a
new function,

F(Vx.l) = VK.IHAHAV]H + /\K-l(l - V[HHV[(.[), (B14)

this incorporates both equation (B13) and the unit length constraint for vk, The solution
is derived by minimizing this equation with respect to each of the elements of v,. The
result is,

2AHAV[(_1 - 2’\K-IVK-1 = 0. (B15)

Rearranging gives,
A"Avy, = AR-1VE-1, (B16)

. . . H
which is an eigenvector expression for A"A.

Returning once again to the error power expression, equation (B13), and
incorporating the latest result, then

HoH H
€3in = Vit A AV = Vgg AgiVin = Agp (B17)

Therefore the minimum error power ¢2;, results if the eigenvector associated with the
smallest eigenvalue of the matrix AHA is used for the basis vector vg..

Extending this analysis to the case where the rank of matrix A is reduced by any
number, it is apparent that the eigenvectors of the matrix AYA should be ordered so that
the corresponding eigenvalues are arranged in decreasing order, thatis, Ag2 A2 A22 ... 2
Ak1. The optimum reduced rank matrix can then be computed by using equation (B7) and
setting the limit of the summation equal to the rank of the reduced matrix.

From the preceding analysis it is apparent that the basis vectors,
g, V1, V3, ..., V.1, can be computed by performing an eigenanalysis of the matrix AHA.
The corresponding vectors ug, uy, uy, ..., Ug.;, and scalar values ao, 01, 09, ..., 01 Can then
be computed using the relationship expressed by equation (B5). Alternatively, noting
vector set uy, uy, ..., U,y is orthonormal (proof: Equation (B5) can be modified as,
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H H
(oiuy) (Uj‘:j) = (A‘H'i)ﬂ(.Avj)
oi0;0 u;=v; (A Avj)
H H
o050 w;=v,; (A;v;)

u,"u, = ;—’;‘—;7 v, Hv,. (B19)
If 147 then
'y = A vy = AL (0) =, (B20)
i0j i0j
and if ¢ = j then
m"m = —:)f, v,«"v,— = i\-:(l) =1, (B21)

where the relationship A, = o7 follows from equations (B12) and (B17).), and modifying
equation (B5) in the following manner:

H H
(Av,) = (o;uy)
HyH ¢
v, A =o0;u,
HoH H o\ M
\£ AH“:=UJ'(V;' vj)u; u,
A'u,=o0,v, (B22)

By symmetry then, the vector set ug, uy, uy, ..., ux; is an orthonormal basis vector set for
the columns of matrix A [6-3]. Following the same analysis as previously then u, can be
shown to be an eigenvector of the matrix AAH with the same non-zero eigenvalue’ A, as
the matrix AHA.

Given that both vector sets wug, uy, uy, ..., gy and vy, vy, v, ..., Vg are
orthonormal vector sets, and the values oy, 0}, 09, ..., Ox1 are positive real numbers, then
equation (B6) defines the singular value decomposition of matrix A. In this case the
vectors ug, uy, Uy, ..., Uy are called the left singular vectors, the vectors vy, vy, vy, ..., Vi
are called the right singular vectors, and the positive real scalar values oy, gy, 03, ..., 0k
are called the singular values. Using this fact, the singular vectors and singular values
may be calculateé directly using singular value decomposition techniques. Again for the
purposes of optimum reduced rank matrices, the ordering of the vectors will be such that
for the corresponding singular values 92 gy 2 022 ... 2 ok (since o2 = ), as established
by equations (B12) and (B17)).
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